The extensive deployment of Internet of Things (IoT) nodes has led to the emergence of various novel application scenarios, one of which is the Internet of Vehicles (IoV). Prior to efficacious data communication, IoT nodes must initially be equipped with a globally distinctive IPv6 address. Nevertheless, resource constraints and security vulnerabilities impose significant challenges to the addressing process. Existing addressing paradigms have been incapable of simultaneously meeting the requirements for security, scalability of the routing communication network, and address privacy protection of the terminal node. Consequently, they are not appropriate for utilization in IoV scenarios. To address these issues, this paper formulates a network model combining a static backbone network and a dynamic mobile network based on the characteristics of the IoV scenarios and designs a secure and dynamic fusion addressing scheme (SD-FAC). In SD-FAC, the backbone nodes utilize a lightweight security-enhanced neighbor discovery protocol based on location information to effectuate address registration, resisting message forgery, modification, and replay attacks, enhancing the security of the routing communication network, while supporting network scalability and automatic route establishment. The mobile nodes employ the congruence class approach to pre-construct independent address spaces and promptly complete association addressing upon entering the backbone network area. We analyze the addressing performance of the overall network model from eight indicators. Experimental simulation results demonstrate that the addressing latency, resource overhead, and energy consumption of the mobile network are all superior to those of the relevant addressing schemes.