Mariana Barreiros , Filipe Maciel , Ricardo S. Pereira , António A. Vicente , Ricardo N. Pereira
{"title":"Electric fields to support microalgae growth with a differentiated biochemical composition","authors":"Mariana Barreiros , Filipe Maciel , Ricardo S. Pereira , António A. Vicente , Ricardo N. Pereira","doi":"10.1016/j.ifset.2024.103829","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgae are a group of microorganisms well-known for their high metabolic plasticity and biomass with commercial interest for several industries. In the present work, the influence of in-situ electric field application (INEF) on the growth and biochemical composition of <em>Pavlova gyrans</em> was, for the first time, assessed. Electrical protocols were tested, namely by applying INEF in different growth stages, in varying treatment times and even by combining it with dark phase of cells' photoperiod. INEF did not promote a stimulatory effect on growth but influenced the biochemical composition of <em>P. gyrans</em> – maximum increases of 74.9 and 66.2 % in the chlorophyll <em>a</em> and carotenoid content and of 4.72, 18.7 and 5.41 % in the lipid, carbohydrate and protein content were observed in independent experiments. Hence, with this study, the potential of INEF application as a strategy to modulate growth and to promote biochemical composition alterations was proven.</div></div><div><h3>Industrial relevance</h3><div>Microalgae, with their unique ability to efficiently convert sunlight and carbon dioxide into biomass, offer a sustainable platform for the synthesis of diverse bioactive compounds. By subjecting microalgae to controlled electric stress conditions, their metabolic pathways can be redirected towards the production of specific target compounds. This strategy has the potential to enhance the yield of high-value molecules, including biofuels, pharmaceuticals, nutraceuticals, and pigments, whilst minimizing resource inputs. Additionally, metabolic stress responses in microalgae often trigger the accumulation of secondary metabolites with bioactive properties. Harnessing the metabolic plasticity of microalgae through controlled stress manipulation represents a cutting-edge strategy for sustainable and economically viable bioproduction systems that align with the goals of green chemistry and circular economy principles.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"97 ","pages":"Article 103829"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002686","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae are a group of microorganisms well-known for their high metabolic plasticity and biomass with commercial interest for several industries. In the present work, the influence of in-situ electric field application (INEF) on the growth and biochemical composition of Pavlova gyrans was, for the first time, assessed. Electrical protocols were tested, namely by applying INEF in different growth stages, in varying treatment times and even by combining it with dark phase of cells' photoperiod. INEF did not promote a stimulatory effect on growth but influenced the biochemical composition of P. gyrans – maximum increases of 74.9 and 66.2 % in the chlorophyll a and carotenoid content and of 4.72, 18.7 and 5.41 % in the lipid, carbohydrate and protein content were observed in independent experiments. Hence, with this study, the potential of INEF application as a strategy to modulate growth and to promote biochemical composition alterations was proven.
Industrial relevance
Microalgae, with their unique ability to efficiently convert sunlight and carbon dioxide into biomass, offer a sustainable platform for the synthesis of diverse bioactive compounds. By subjecting microalgae to controlled electric stress conditions, their metabolic pathways can be redirected towards the production of specific target compounds. This strategy has the potential to enhance the yield of high-value molecules, including biofuels, pharmaceuticals, nutraceuticals, and pigments, whilst minimizing resource inputs. Additionally, metabolic stress responses in microalgae often trigger the accumulation of secondary metabolites with bioactive properties. Harnessing the metabolic plasticity of microalgae through controlled stress manipulation represents a cutting-edge strategy for sustainable and economically viable bioproduction systems that align with the goals of green chemistry and circular economy principles.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.