This study aimed to develop nutritionally enhanced snacks through the synergistic combination of two diverse nutrient sources: milk protein concentrate containing >81% milk protein (MPC81), and a composite source of fiber (>70 wt%) and bioactive compounds (total phenolics, flavonoids, antioxidants, and vitamin C) in the form of agro-industrial byproducts such as apple pomace. Starch and MPC81-based formulations containing 30% (w/w) apple pomace powder were extruded into puffs using supercritical fluid extrusion (SCFX). The effect of SCFX on the retention of bioactive compounds along with the physical, textural, and morphological properties of starch and protein-based extrudates were investigated and compared. Additionally, changes in inter-and intra-molecular interactions among biopolymers during extrusion, and their role in the expansion characteristics of extrudates were also quantified. The resulting MPC81-based extrudates were found to have lighter (0.12 g/cm3 piece density) and softer texture (3.16 kg hardness) compared to starch-based extrudates (0.23 g/cm3 piece density, 12.06 kg hardness), indicating that MPC81-based extrudates containing 30% apple pomace powder offer better functional and sensory-related physical properties. Because of low-temperature (∼25 °C barrel temperature, ∼85 °C product temperature), and low-shear (100 rpm screw speed) along with the use of SC-CO2 as a blowing agent, the resulting extrudates were observed to retain up to 80% total phenolics, 75% antioxidants and 62% vitamin C, which are significantly higher than those reported previously using high-temperature, steam-based cooking extrusion. The FTIR spectra of starch-based formulations indicated a loss of crystallinity and decreased cellulose-lignin interactions, which contributed to the improved extrudate expansion. On the other hand, the expanded protein network was presumably stabilized by an increase in protein aggregation, mainly composed of an elevated β-structure, as confirmed by the FTIR analysis of the protein-based extrudates. The nutritional profile showed that milk protein-based puffs were nutritionally far superior, having significantly higher levels of protein, ash, and fat, as compared to the starch-based puffs. Overall, this study highlights the potential of SCFX to produce milk protein-based extruded products that are nutritionally enriched with agro-industry byproducts such as fruit and vegetable pomace, thereby, adding value to the industrial byproducts streams and lowering the cost of more expensive protein-based products.
The objective of this study was to assess the impact of continuous flow microwave processing on the pasteurization efficiency and quality attributes of liquid whole egg (LWE). The heating section was accomplished using microwave, while the holding section utilized a water bath, and the process parameters were determined by a developed numerical model. The inactivation kinetics of Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis were evaluated at three temperatures (56, 60 and 64 °C) and two power-density (8 and 16 W/mL with different flow rates). A 5-log10 reduction was achieved and the Weibull model fitting the survival data well, which contributed to the optimization of microwave pasteurization process. Additionally, microwave promoted the transitions of secondary structures from β-sheet to α-helix and stabilised the system by enhancing the zeta potential value, further improving the emulsifying and foaming properties. The major proteins in LWE were not found to undergo degradation according to the results obtained from SDS-PAGE analysis. The results of this study suggested that continuous flow microwave pasteurization of LWE exhibits potential as a viable alternative to conventional pasteurization methods.
The adoption of high-efficiency physical processing methods is imperative for the sustainable and low-carbon advancement of the food industry. This study confirmed the feasibility of continuous flow microwave pasteurization as an alternative to conventional methods for liquid whole egg, addressing key limitations encountered in traditional pasteurization approaches, and the findings offer practical insights for industrial-scale production. Additionally, the development and application of a continuous flow microwave heating system for pasteurizing liquid whole egg provide valuable knowledge for the utilization of microwave treatment in processing high-viscosity and heat-sensitive fluid foods.
Aspergillus chevalieri is a xerophilic/xerotolerant fungi affecting dried food products. In this study the ability of non-thermal cold atmospheric plasma (CAP) at high power density (NOx) to affect biological process inducing the stress responses of A. chevalieri species exposed for 5 min (5’CAP-NOx) and 30 min (30’CAP-NOx) were analysed at 0, 1, 6, 12 and 48-h post treatment (hpt). At 48 hpt with 30’CAP-NOx, 84% of fungal growth reduction was observed. The membrane integrity estimated by confocal investigation after carboxyfluorescein diacetate/propidium iodide staining showed the dead surface mycelium layers exposed to the treatments. Reverse transcription-quantitative real-time PCR revealed an early downregulation, at 0 hpt, followed by upregulation or recovery starting to 1 hpt, of selected key genes involved in fungal stress responses. The cellular response to stress was confirmed by mycelial glutathione accumulation in the early phase after both CAP-NOx treatments, at 0 and 1 hpt, followed by the strong glutathione reduction at 12 and 48 hpt using 30’CAP-NOx treatment. The ability of A. chevalieri to modulate metabolic profile according to treatments was underlined by volatilome investigation, which mainly involved lipid metabolism. This work highlighted the adaptative response mechanisms of A. chevalieri to overcome the CAP-NOx treatment.
The application of cold atmospheric plasma (CAP) technology to avoid microbial growth in foods is considered of high interest. Utilization of CAP technology, a nonthermal technique, is encouraged because of its efficiency in maintaining natural aroma and flavor and product shelf-life. Regarding the management of Aspergillus chevalieri, the developments in mechanistic insights indicated that cold plasma affected several targets in fungal cells and was a successful tactic when employed to stop the selection of resistant fungal strains.
Cold atmospheric plasma (CAP) is a non-thermal technology, successfully used to decontaminate and extend the shelf-life of various foods. However, since CAP is highly oxidative, it can cause quality deterioration in sensitive matrices, such as fish products. This research aimed to evaluate the effect of CAP treatment with a surface dielectric barrier discharge (SDBD) with different gas mixtures (80% Ar/20% O2, or 80% N2/20% O2) on the decontamination of inoculated pathogens (E.coli and L.innocua; log 4 CFU/g inoculum) and endogenous spoilage microbiota and on the main quality indices of seabream (Spaurus aurata) fillets. For selected appropriate treatments, the impact on the nutritional value of the products was investigated through in vitro digestion, bioaccessibility of fatty acids and the degree of protein hydrolysis.
The use of CAP resulted in a decrease in the bacterial load in the fresh sea bream fillets up to 1 log CFU/g obtained with Ar/O2 gas mixture for 20 min, affected by the treatment duration, but not by the gas mixture. Although a slight increase in lipid oxidation was observed (from 0.5 mg MDA/kg to a maximum of 4 mg MDA/kg), the digestibility of the products was not affected.
From an industrial point of view, increasing shelf-life of perishable products such as fish fillets with an environmentally friendly and non-thermal technology could represent a great advantage; however, maintaining quality is of paramount importance for the industrial use of this novel processing technology. The results of the present study show negligible effects on the nutritional quality of seabream fillets, which encourages further research.