Fenhua Bai , Zikang Wang , Kai Zeng , Chi Zhang , Tao Shen , Xiaohui Zhang , Bei Gong
{"title":"ZKSA: Secure mutual Attestation against TOCTOU Zero-knowledge Proof based for IoT Devices","authors":"Fenhua Bai , Zikang Wang , Kai Zeng , Chi Zhang , Tao Shen , Xiaohui Zhang , Bei Gong","doi":"10.1016/j.cose.2024.104136","DOIUrl":null,"url":null,"abstract":"<div><div>With the widespread adoption of Internet of Things (IoT) devices, remote attestation is crucial for ensuring their security. However, current schemes that require a central verifier or interactive approaches are expensive and inefficient for collaborative autonomous systems. Furthermore, the security of the software state cannot be guaranteed before or between successive attestations, leaving devices vulnerable to Time-Of-Check-Time-Of-Use (TOCTOU) attacks, as well as confidentiality issues arising from pre-sharing software information with the verifier. Therefore, we propose the Secure mutual Attestation against TOCTOU Zero-Knowledge proof based for IoT devices (ZKSA), which allows devices to mutually attest without a central verifier, and the attestation result is transparent while preserving confidentiality. We implement a ZKSA prototype on a Raspberry Pi 3B, demonstrating its feasibility and security. Even if malware is removed before the next attestation, it will be detected and the detection time is typically constant. Simulations show that compared to other schemes for mutual attestation, such as DIAT and CFRV, ZKSA exhibits scalability. When the prover attests to numerous verifier devices, ZKSA reduces the verification time from linear to constant.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104136"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004413","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the widespread adoption of Internet of Things (IoT) devices, remote attestation is crucial for ensuring their security. However, current schemes that require a central verifier or interactive approaches are expensive and inefficient for collaborative autonomous systems. Furthermore, the security of the software state cannot be guaranteed before or between successive attestations, leaving devices vulnerable to Time-Of-Check-Time-Of-Use (TOCTOU) attacks, as well as confidentiality issues arising from pre-sharing software information with the verifier. Therefore, we propose the Secure mutual Attestation against TOCTOU Zero-Knowledge proof based for IoT devices (ZKSA), which allows devices to mutually attest without a central verifier, and the attestation result is transparent while preserving confidentiality. We implement a ZKSA prototype on a Raspberry Pi 3B, demonstrating its feasibility and security. Even if malware is removed before the next attestation, it will be detected and the detection time is typically constant. Simulations show that compared to other schemes for mutual attestation, such as DIAT and CFRV, ZKSA exhibits scalability. When the prover attests to numerous verifier devices, ZKSA reduces the verification time from linear to constant.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.