HC-NIDS: Historical contextual information based network intrusion detection system in Internet of Things

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computers & Security Pub Date : 2025-02-15 DOI:10.1016/j.cose.2025.104367
Zijie Chen , Hailin Zou , Tao Hu , Xun Yuan , Xiaofen Fang , Yuanyuan Pan , Jianqing Li
{"title":"HC-NIDS: Historical contextual information based network intrusion detection system in Internet of Things","authors":"Zijie Chen ,&nbsp;Hailin Zou ,&nbsp;Tao Hu ,&nbsp;Xun Yuan ,&nbsp;Xiaofen Fang ,&nbsp;Yuanyuan Pan ,&nbsp;Jianqing Li","doi":"10.1016/j.cose.2025.104367","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of the burgeoning Internet of Things (IoT), the security of interconnected devices is of paramount importance. Nevertheless, the dynamic nature of IoT networks and the challenges in low-label data volume present significant difficulties for traditional network security technologies. This paper introduces HC-NIDS, a Historical Contextual Traffic Based Network Intrusion Detection System, which addresses these challenges by leveraging contextual information from historical traffic. In HC-NIDS, we propose a novel feature representation technique based on the structure of Graph Neural Networks (GNNs), called Signal Channel Correlation Fusion Representation. This technique is designed to extract compelling features from complex historical traffic in a dynamic manner. Subsequently, the incorporation of extracted historical and current traffic features facilitates the enhancement of the efficacy and resilience of HC-NIDS against evolving network threats. A series of comprehensive experiments on four public datasets have validated the effectiveness of HC-NIDS, demonstrating its superior performance even when utilizing disparate volumes of labeled data. Notably, in multi-classification tasks, the detection outcomes remain markedly enhanced even when employing a mere 2% of original labeled training data, in comparison to the baselines. The study also investigates the impact of varying lengths of historical data and the functionality of different modules within HC-NIDS, confirming its adaptability and potential for practical application in securing IoT networks. The findings highlight the critical role of historical traffic information in enhancing the accuracy of network intrusion detection, indicating a promising direction for future research in network security.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"152 ","pages":"Article 104367"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825000562","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of the burgeoning Internet of Things (IoT), the security of interconnected devices is of paramount importance. Nevertheless, the dynamic nature of IoT networks and the challenges in low-label data volume present significant difficulties for traditional network security technologies. This paper introduces HC-NIDS, a Historical Contextual Traffic Based Network Intrusion Detection System, which addresses these challenges by leveraging contextual information from historical traffic. In HC-NIDS, we propose a novel feature representation technique based on the structure of Graph Neural Networks (GNNs), called Signal Channel Correlation Fusion Representation. This technique is designed to extract compelling features from complex historical traffic in a dynamic manner. Subsequently, the incorporation of extracted historical and current traffic features facilitates the enhancement of the efficacy and resilience of HC-NIDS against evolving network threats. A series of comprehensive experiments on four public datasets have validated the effectiveness of HC-NIDS, demonstrating its superior performance even when utilizing disparate volumes of labeled data. Notably, in multi-classification tasks, the detection outcomes remain markedly enhanced even when employing a mere 2% of original labeled training data, in comparison to the baselines. The study also investigates the impact of varying lengths of historical data and the functionality of different modules within HC-NIDS, confirming its adaptability and potential for practical application in securing IoT networks. The findings highlight the critical role of historical traffic information in enhancing the accuracy of network intrusion detection, indicating a promising direction for future research in network security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
期刊最新文献
Secure bi-attribute index: Batch membership tests over the non-sensitive attribute HC-NIDS: Historical contextual information based network intrusion detection system in Internet of Things The silence of the phishers: Early-stage voice phishing detection with runtime permission requests Editorial Board M2FD: Mobile malware federated detection under concept drift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1