Analysis of boundary layer flow of a Jeffrey fluid over a stretching or shrinking sheet immersed in a porous medium

{"title":"Analysis of boundary layer flow of a Jeffrey fluid over a stretching or shrinking sheet immersed in a porous medium","authors":"","doi":"10.1016/j.padiff.2024.100951","DOIUrl":null,"url":null,"abstract":"<div><div>Heat transfer optimization is critical in many applications, such as heat exchangers, electric coolers, solar collectors, and nuclear reactors. The current work looks at the thermohydraulic behavior of Jeffery fluid flow along a plane containing a magnetic field, a non-uniform heat source/sink, and a porous media. Numerical solutions are derived using the Runge-Kutta 4th-order approach and the shooting method. Graphs show how Prandtl number (Pr), thermal stratification (e<sub>1</sub>), Jeffery parameter (λ<sub>1</sub>), porous parameter (λ<sub>2</sub>), magnetic field (M), and heat generation/absorption (γ, a, b) affect velocity and temperature profiles. The results show that thermal stratification increases fluid velocity and temperature, whereas heat source/sink parameters have the reverse effect on heat transfer, and raising the Jeffrey parameter reduces velocity and increases boundary layer thickness. There is extremely high agreement with experimental data from the literature. This work illustrates the utility of hydromagnetic properties in modelling fluid flow over stretching/shrinking sheets in porous media.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Heat transfer optimization is critical in many applications, such as heat exchangers, electric coolers, solar collectors, and nuclear reactors. The current work looks at the thermohydraulic behavior of Jeffery fluid flow along a plane containing a magnetic field, a non-uniform heat source/sink, and a porous media. Numerical solutions are derived using the Runge-Kutta 4th-order approach and the shooting method. Graphs show how Prandtl number (Pr), thermal stratification (e1), Jeffery parameter (λ1), porous parameter (λ2), magnetic field (M), and heat generation/absorption (γ, a, b) affect velocity and temperature profiles. The results show that thermal stratification increases fluid velocity and temperature, whereas heat source/sink parameters have the reverse effect on heat transfer, and raising the Jeffrey parameter reduces velocity and increases boundary layer thickness. There is extremely high agreement with experimental data from the literature. This work illustrates the utility of hydromagnetic properties in modelling fluid flow over stretching/shrinking sheets in porous media.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杰弗里流体在浸入多孔介质的伸缩片上的边界层流动分析
在热交换器、电冷却器、太阳能集热器和核反应堆等许多应用中,传热优化至关重要。目前的研究着眼于杰弗里流体沿含有磁场、非均匀热源/散热器和多孔介质的平面流动的热流体力学行为。使用 Runge-Kutta 四阶方法和射击法得出了数值解。图表显示了普朗特数 (Pr)、热分层 (e1)、杰弗里参数 (λ1)、多孔参数 (λ2)、磁场 (M) 和发热/吸热 (γ、a、b) 如何影响速度和温度曲线。结果表明,热分层会增加流体速度和温度,而热源/沉降参数对热传递的影响相反,提高杰弗里参数会降低速度并增加边界层厚度。与文献中的实验数据具有极高的一致性。这项工作说明了水磁特性在模拟多孔介质中拉伸/收缩片上的流体流动时的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Investigation of lump, breather and multi solitonic wave solutions to fractional nonlinear dynamical model with stability analysis An iterative approach for addressing monotone inclusion and fixed point problems with generalized demimetric mappings New modifications of natural transform iterative method and q-homotopy analysis method applied to fractional order KDV-Burger and Sawada–Kotera equations A two-strain COVID-19 co-infection model with strain 1 vaccination Existence, stability and the number of two-dimensional invariant manifolds for the convective Cahn–Hilliard equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1