{"title":"Efficient optimization of robust project scheduling for industry 4.0: A hybrid approach based on machine learning and meta-heuristic algorithms","authors":"Alireza Goli","doi":"10.1016/j.ijpe.2024.109427","DOIUrl":null,"url":null,"abstract":"<div><div>This research contributes significantly to the domain of Industry 4.0 by offering a nuanced approach to the multi-objective optimization of the resource-constrained project scheduling problem (RCPSP) under uncertainty. Focused on the context of smart product platforming, this study introduces a novel methodology that not only considers traditional factors like time and cost but also incorporates quality and risk aspects, crucial for personalized product fulfillment. In this regard, a comprehensive four-objective mathematical model is proposed to minimize project completion time, total project costs, and project risks while simultaneously enhancing overall project quality. Real-world uncertainty is acknowledged through the incorporation of uncertain parameters for the time, risk, and quality associated with each project activity. To address this uncertainty, a robust optimization method is applied based on Bertsimas and Sim's approach. Moreover, to optimize the proposed model, the Hybrid Red Deer and Genetic Algorithm (HRDGA) is proposed, which is leveraging a machine learning approach for clustering solutions. The numerical results demonstrate that increasing the project budget by 30% leads to an upward trend in total project costs and a reduction in the minimum acceptable quality by 10%–30% results in a decreasing trend in the total project cost. This research emphasizes the adoption of Industry 4.0 enabling technology within the project scheduling platform, particularly highlighting its significance for personalized product fulfillment.</div></div>","PeriodicalId":14287,"journal":{"name":"International Journal of Production Economics","volume":"278 ","pages":"Article 109427"},"PeriodicalIF":9.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Economics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925527324002846","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research contributes significantly to the domain of Industry 4.0 by offering a nuanced approach to the multi-objective optimization of the resource-constrained project scheduling problem (RCPSP) under uncertainty. Focused on the context of smart product platforming, this study introduces a novel methodology that not only considers traditional factors like time and cost but also incorporates quality and risk aspects, crucial for personalized product fulfillment. In this regard, a comprehensive four-objective mathematical model is proposed to minimize project completion time, total project costs, and project risks while simultaneously enhancing overall project quality. Real-world uncertainty is acknowledged through the incorporation of uncertain parameters for the time, risk, and quality associated with each project activity. To address this uncertainty, a robust optimization method is applied based on Bertsimas and Sim's approach. Moreover, to optimize the proposed model, the Hybrid Red Deer and Genetic Algorithm (HRDGA) is proposed, which is leveraging a machine learning approach for clustering solutions. The numerical results demonstrate that increasing the project budget by 30% leads to an upward trend in total project costs and a reduction in the minimum acceptable quality by 10%–30% results in a decreasing trend in the total project cost. This research emphasizes the adoption of Industry 4.0 enabling technology within the project scheduling platform, particularly highlighting its significance for personalized product fulfillment.
期刊介绍:
The International Journal of Production Economics focuses on the interface between engineering and management. It covers all aspects of manufacturing and process industries, as well as production in general. The journal is interdisciplinary, considering activities throughout the product life cycle and material flow cycle. It aims to disseminate knowledge for improving industrial practice and strengthening the theoretical base for decision making. The journal serves as a forum for exchanging ideas and presenting new developments in theory and application, combining academic standards with practical value for industrial applications.