Nidhi Sharma , Rajesh Kumar Srivastava , Deep Sehgal , Devarshi Mrinal Das
{"title":"A low-power common-mode insensitive rail-to-rail dynamic comparator for ADCs","authors":"Nidhi Sharma , Rajesh Kumar Srivastava , Deep Sehgal , Devarshi Mrinal Das","doi":"10.1016/j.vlsi.2024.102288","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a low-power, high-speed dynamic comparator with a rail-to-rail input common-mode (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>c</mi><mi>m</mi></mrow></msub></math></span>) range. The proposed comparator has high-speed performance throughout the 0-Vdd <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>c</mi><mi>m</mi></mrow></msub></math></span> range, thus attributing common-mode insensitivity. This work introduces a merger of NMOS and PMOS dynamic pre-amplifiers with a modified latch to achieve the rail-to-rail <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>c</mi><mi>m</mi></mrow></msub></math></span> operation. A novel activation clock logic is also proposed, activating only one pre-amplifier based on the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>c</mi><mi>m</mi></mrow></msub></math></span> value and ensuring low-power consumption and provides reduction of 17% in the energy per conversion as compared to the comparator without activation clock logic. The proposed comparator is designed using 65-nm CMOS technology with a 1.2 V supply voltage and is operating at 1 GHz frequency. We have presented the analytical models of the delay and offset which is verified with the rigorous post-layout simulation results. To validate the robustness of the proposed comparator, the PVT corner analysis with Monte Carlo simulation is also performed for different <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>c</mi><mi>m</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102288"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001524","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a low-power, high-speed dynamic comparator with a rail-to-rail input common-mode () range. The proposed comparator has high-speed performance throughout the 0-Vdd range, thus attributing common-mode insensitivity. This work introduces a merger of NMOS and PMOS dynamic pre-amplifiers with a modified latch to achieve the rail-to-rail operation. A novel activation clock logic is also proposed, activating only one pre-amplifier based on the value and ensuring low-power consumption and provides reduction of 17% in the energy per conversion as compared to the comparator without activation clock logic. The proposed comparator is designed using 65-nm CMOS technology with a 1.2 V supply voltage and is operating at 1 GHz frequency. We have presented the analytical models of the delay and offset which is verified with the rigorous post-layout simulation results. To validate the robustness of the proposed comparator, the PVT corner analysis with Monte Carlo simulation is also performed for different .
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.