Jian-Cheng Dai , Dong-Sheng Wang , Wei-Jian Tang , Yu-He Zou , Ying-Xin Hui , Ya-Jun Zhang
{"title":"Parameter-normalized probabilistic seismic demand model considering the structural design strength for structural response assessment","authors":"Jian-Cheng Dai , Dong-Sheng Wang , Wei-Jian Tang , Yu-He Zou , Ying-Xin Hui , Ya-Jun Zhang","doi":"10.1016/j.soildyn.2024.109023","DOIUrl":null,"url":null,"abstract":"<div><div>The Probabilistic Seismic Demand Model (PSDM) is a crucial component of the performance-based seismic design framework when establishing the relationship between the ground motion intensity measure (IM) and the engineering demand parameter (EDP). The definitions of IMs and EDPs introduce varying degrees of uncertainty into the PSDM and notes different fragility or hazard analysis results. In accordance with the elastic limit state of the structural seismic response, this study normalizes two key parameters, the IM and EDP, within the PSDM. Normalized EDP (<em>EDP</em><sup>N</sup>) is the ratio of the structural response to the elastic limit state of the structure, as defined by the onset of the strength yielding of the main structural element. Similarly, the IM (<em>IM</em><sup>N</sup>) is normalized based on corresponding ground motions (scaled) that cause the structure to offer an elastic limit state response. This means that structural design strength is considered in <em>IM</em><sup>N</sup> following the construction of a parameter-normalized PSDM. The study examined two typical isolated bridges presented their hazard curves with <em>IM</em><sup>N</sup>. The results show that <em>IM</em><sup>N</sup> can unify the efficiency and sufficiency of different IMs and reduce uncertainty in the PSDM. The assessment error of the structural elastic limit state for its design strength had little effect on the parameter-normalized PSDM, so the model is robust. Additionally, the <em>IM</em><sup>N</sup> outperformed traditional IMs for efficiency and sufficiency in most instances.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"187 ","pages":"Article 109023"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026772612400575X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Probabilistic Seismic Demand Model (PSDM) is a crucial component of the performance-based seismic design framework when establishing the relationship between the ground motion intensity measure (IM) and the engineering demand parameter (EDP). The definitions of IMs and EDPs introduce varying degrees of uncertainty into the PSDM and notes different fragility or hazard analysis results. In accordance with the elastic limit state of the structural seismic response, this study normalizes two key parameters, the IM and EDP, within the PSDM. Normalized EDP (EDPN) is the ratio of the structural response to the elastic limit state of the structure, as defined by the onset of the strength yielding of the main structural element. Similarly, the IM (IMN) is normalized based on corresponding ground motions (scaled) that cause the structure to offer an elastic limit state response. This means that structural design strength is considered in IMN following the construction of a parameter-normalized PSDM. The study examined two typical isolated bridges presented their hazard curves with IMN. The results show that IMN can unify the efficiency and sufficiency of different IMs and reduce uncertainty in the PSDM. The assessment error of the structural elastic limit state for its design strength had little effect on the parameter-normalized PSDM, so the model is robust. Additionally, the IMN outperformed traditional IMs for efficiency and sufficiency in most instances.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.