{"title":"Stability of slopes in partially saturated soils: Incorporating the combined effects of seismic forces and pore water pressure","authors":"Chang Liu , Yunong Li , Liwei Wang","doi":"10.1016/j.soildyn.2024.108996","DOIUrl":null,"url":null,"abstract":"<div><div>Earthquakes and groundwater are pivotal factors affecting slope stability. However, the majority of previous studies have focused on these factors individually, neglecting their combined effects. Hence, this paper aims to develop a framework using the kinematic approach of limit analysis to investigate the stability of slopes in partially saturated soils under the combined effects of seismic force and pore-water pressure. The pseudo-dynamic method (PDM) was employed to capture the temporal-spatial effect of horizontal and vertical seismic waves. Variations in suction and effective unit weight profiles with moisture content under steady-state unsaturated flow were considered. External rates arising from both static pore-water pressure and earthquake-induced excess pore-water pressure were incorporated into the energy-balance equation. With the aid of gravity increase method (GIM), an explicit expression of safety factor (FS) was derived and optimized using a genetic algorithm (GA). The validity of this approach was verified through a comparison with existing solutions. Parametric analyses were conducted to explore the influence of varying groundwater level, seismic coefficients, suction, three-dimensional effects, excess pore water pressure, unsaturated flow types, and pseudo-dynamic parameters, on the FS and critical sliding surface of slopes in partially saturated slopes. This framework can provide a good reference for the safety design of reservoir slope under the combined effects of earthquakes and groundwater.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"187 ","pages":"Article 108996"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124005487","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Earthquakes and groundwater are pivotal factors affecting slope stability. However, the majority of previous studies have focused on these factors individually, neglecting their combined effects. Hence, this paper aims to develop a framework using the kinematic approach of limit analysis to investigate the stability of slopes in partially saturated soils under the combined effects of seismic force and pore-water pressure. The pseudo-dynamic method (PDM) was employed to capture the temporal-spatial effect of horizontal and vertical seismic waves. Variations in suction and effective unit weight profiles with moisture content under steady-state unsaturated flow were considered. External rates arising from both static pore-water pressure and earthquake-induced excess pore-water pressure were incorporated into the energy-balance equation. With the aid of gravity increase method (GIM), an explicit expression of safety factor (FS) was derived and optimized using a genetic algorithm (GA). The validity of this approach was verified through a comparison with existing solutions. Parametric analyses were conducted to explore the influence of varying groundwater level, seismic coefficients, suction, three-dimensional effects, excess pore water pressure, unsaturated flow types, and pseudo-dynamic parameters, on the FS and critical sliding surface of slopes in partially saturated slopes. This framework can provide a good reference for the safety design of reservoir slope under the combined effects of earthquakes and groundwater.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.