Thermal study of MHD hybrid nano fluids confined between two parallel sheets: Shape factors analysis

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2024-10-05 DOI:10.1016/j.csite.2024.105229
{"title":"Thermal study of MHD hybrid nano fluids confined between two parallel sheets: Shape factors analysis","authors":"","doi":"10.1016/j.csite.2024.105229","DOIUrl":null,"url":null,"abstract":"<div><div>This article discusses the heat and air transfer characteristics of stable magnetohydrodynamic nanofluid flow between two interconnected sheets under the influence of a magnetic field. The nanofluid is a mixture of equal proportions of ethylene glycol and water. This study examined hybrid nanoparticles containing multi-walled carbon nanotubes (MWCNT) and silver (Ag). This research presents, for the first time, a new method for solving nonlinear equations using HPM Python and AGM Python. In addition, the symbolic solution to HPM and AGM has been attained by employing SymPy and SciPy libraries in Python. The results are presented graphically by comparing them with the fourth-order Runge-Kutta number. The final results reflect a high level of agreement between the analytical and numerical methods on the one hand and HPM Python and AGM Python on the other hand. This examination also investigates the effect of various parameters, including magnetic properties, viscosity coefficients, thermophoretic parameters, Brownian parameters, and nanofluid parameters such as velocity, temperature, and concentration. The results prove that velocity and concentration increase as the magnetic field decreases, whereas the temperature displays an opposite trend. As the Schmidt number increases, both the Nusselt number and concentration decrease. The relationship between concentration and temperature with respect to the Prandtl number indicates that when the Prandtl number decreases, the temperature increases while the concentration declines. It is important to note that the employment of hybrid nanofluids leads to an increase in velocity, temperature, and concentration.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012607","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the heat and air transfer characteristics of stable magnetohydrodynamic nanofluid flow between two interconnected sheets under the influence of a magnetic field. The nanofluid is a mixture of equal proportions of ethylene glycol and water. This study examined hybrid nanoparticles containing multi-walled carbon nanotubes (MWCNT) and silver (Ag). This research presents, for the first time, a new method for solving nonlinear equations using HPM Python and AGM Python. In addition, the symbolic solution to HPM and AGM has been attained by employing SymPy and SciPy libraries in Python. The results are presented graphically by comparing them with the fourth-order Runge-Kutta number. The final results reflect a high level of agreement between the analytical and numerical methods on the one hand and HPM Python and AGM Python on the other hand. This examination also investigates the effect of various parameters, including magnetic properties, viscosity coefficients, thermophoretic parameters, Brownian parameters, and nanofluid parameters such as velocity, temperature, and concentration. The results prove that velocity and concentration increase as the magnetic field decreases, whereas the temperature displays an opposite trend. As the Schmidt number increases, both the Nusselt number and concentration decrease. The relationship between concentration and temperature with respect to the Prandtl number indicates that when the Prandtl number decreases, the temperature increases while the concentration declines. It is important to note that the employment of hybrid nanofluids leads to an increase in velocity, temperature, and concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
限制在两平行板之间的 MHD 混合纳米流体的热研究:形状因素分析
本文讨论了在磁场影响下,稳定的磁流体纳米流体在两个相互连接的薄片之间流动时的热量和空气传递特性。纳米流体是乙二醇和水的等比例混合物。这项研究考察了含有多壁碳纳米管(MWCNT)和银(Ag)的混合纳米粒子。本研究首次提出了一种使用 HPM Python 和 AGM Python 求解非线性方程的新方法。此外,还利用 Python 中的 SymPy 和 SciPy 库实现了 HPM 和 AGM 的符号解法。通过与四阶 Runge-Kutta 数的比较,以图形方式展示了结果。最终结果反映了分析和数值方法与 HPM Python 和 AGM Python 之间的高度一致。本次研究还考察了各种参数的影响,包括磁性能、粘度系数、热泳参数、布朗参数以及纳米流体参数(如速度、温度和浓度)。结果证明,速度和浓度随着磁场的减小而增加,而温度则呈现相反的趋势。随着施密特数的增加,努赛特数和浓度都会降低。浓度和温度与普朗特数的关系表明,当普朗特数降低时,温度升高而浓度降低。值得注意的是,混合纳米流体的使用会导致速度、温度和浓度的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Thermodynamic evaluation of a Ca-Cu looping post-combustion CO2 capture system integrated with thermochemical recuperation based on steam methane reforming Thermal performance of shell-and-tube polymeric hollow fiber heat exchangers as oil coolers Thermal runaway evolution of a 4S4P lithium-ion battery pack induced by both overcharging and unilateral preheating Research on the process of heat transfer between mobile variable temperature heat source and thermoacoustic plate Impact of collector aspect ratio on the energy and exergy efficiency of a louvered fin solar air heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1