A hybrid approach combining UD and GA-CV-SVM to evaluate shear performance in high asphalt concrete core

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2024-10-05 DOI:10.1016/j.compgeo.2024.106812
Yong Li , Yanlong Li , Lifeng Wen , Weimei Li , Ye Zhang , Peng Bu , Xinjian Sun
{"title":"A hybrid approach combining UD and GA-CV-SVM to evaluate shear performance in high asphalt concrete core","authors":"Yong Li ,&nbsp;Yanlong Li ,&nbsp;Lifeng Wen ,&nbsp;Weimei Li ,&nbsp;Ye Zhang ,&nbsp;Peng Bu ,&nbsp;Xinjian Sun","doi":"10.1016/j.compgeo.2024.106812","DOIUrl":null,"url":null,"abstract":"<div><div>The shear effect on high asphalt concrete core is significant. However, studies on the reliability of 100-meter-scale cores against shear damage remain limited. A key challenge in this research field is establishing the control criteria for the core and improving the computational efficiency of implicit limit state function (LSF). Additionally, the impact of material parameter uncertainty on the shear failure reliability of the core during the dam construction and impoundment stages remains unclear. To address this, a safety evaluation method based on time discretization was proposed, combining uniform design (UD), K-fold cross-validation (K-CV), and genetic algorithm (GA) to optimize the support vector machines (SVM). The core parameters of 52 asphalt concrete-core rockfill dams (ACCRDs) were analyzed, with the statistical values of the basic variables considered in determining the reliability index. The theoretical derivation of the critical shear failure safety index established a stability formula to assess the safety state of the dam core. The significance parameters were identified, and the sample points were generated at each stage using UD, and the Support Vector Regression (SVR) was applied to reconstruct the LSF, and reliability was calculated through the checking point method.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"176 ","pages":"Article 106812"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007511","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The shear effect on high asphalt concrete core is significant. However, studies on the reliability of 100-meter-scale cores against shear damage remain limited. A key challenge in this research field is establishing the control criteria for the core and improving the computational efficiency of implicit limit state function (LSF). Additionally, the impact of material parameter uncertainty on the shear failure reliability of the core during the dam construction and impoundment stages remains unclear. To address this, a safety evaluation method based on time discretization was proposed, combining uniform design (UD), K-fold cross-validation (K-CV), and genetic algorithm (GA) to optimize the support vector machines (SVM). The core parameters of 52 asphalt concrete-core rockfill dams (ACCRDs) were analyzed, with the statistical values of the basic variables considered in determining the reliability index. The theoretical derivation of the critical shear failure safety index established a stability formula to assess the safety state of the dam core. The significance parameters were identified, and the sample points were generated at each stage using UD, and the Support Vector Regression (SVR) was applied to reconstruct the LSF, and reliability was calculated through the checking point method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合 UD 和 GA-CV-SVM 的混合方法评估高沥青混凝土芯材的剪切性能
剪切对高沥青混凝土岩心的影响很大。然而,关于 100 米级芯材抗剪切破坏可靠性的研究仍然有限。该研究领域的一个主要挑战是建立岩心控制标准和提高隐式极限状态函数(LSF)的计算效率。此外,在大坝建设和蓄水阶段,材料参数的不确定性对岩心剪切破坏可靠性的影响仍不明确。针对这一问题,提出了一种基于时间离散化的安全评价方法,将统一设计(UD)、K 倍交叉验证(K-CV)和遗传算法(GA)结合起来,对支持向量机(SVM)进行优化。分析了 52 个沥青混凝土核心堆石坝(ACCRD)的核心参数,并考虑了确定可靠性指数的基本变量的统计值。临界剪切破坏安全指数的理论推导建立了评估坝心安全状态的稳定公式。确定了重要参数,利用 UD 生成了各阶段的样本点,并应用支持向量回归(SVR)重建了 LSF,通过检核点法计算了可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
Stability of conical foundations on anisotropic clay: A comprehensive three-dimensional study on V-H-M failure envelopes Effect of the connection mode on the dynamic characteristics of the pile-wheel composite foundation for offshore wind turbines Particle shape distribution effects on the critical strength of granular materials DEM Validation for impact Wave propagation in dry sand: A comparison with experimental results Evaluation of the shear stiffness and load redistribution of framed structures affected by tunnelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1