Thermal energy storage behaviour of 3D ceramic/molten salt structures under real concentrated solar radiation

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of The European Ceramic Society Pub Date : 2024-10-09 DOI:10.1016/j.jeurceramsoc.2024.116975
Irene Díaz-Herrezuelo , Pilar Miranzo , Audrey Soum-Glaude , Christophe Escape , Quentin Falcoz , Manuel Belmonte
{"title":"Thermal energy storage behaviour of 3D ceramic/molten salt structures under real concentrated solar radiation","authors":"Irene Díaz-Herrezuelo ,&nbsp;Pilar Miranzo ,&nbsp;Audrey Soum-Glaude ,&nbsp;Christophe Escape ,&nbsp;Quentin Falcoz ,&nbsp;Manuel Belmonte","doi":"10.1016/j.jeurceramsoc.2024.116975","DOIUrl":null,"url":null,"abstract":"<div><div>Molten salts, phase change materials commonly employed in thermal energy storage (TES) systems, are widely known to enhance the efficient use and storage of solar energy in concentrated solar power (CSP) plants. Here, three-dimensional TES (3DTES) have been manufactured from highly porous (up to ∼90 %) 3D printed patterned vermiculite (V) and alumina (Al<sub>2</sub>O<sub>3</sub>) supports, which have been infiltrated with molten sodium nitrate salt (nn) and solar salt (ss). These 3DTES have been validated under real concentrated solar radiation in a parabolic solar furnace. Among the different 3DTES, those based on V-nn exhibits the best efficiency for the conversion of the incident solar radiation into heat; whereas Al<sub>2</sub>O<sub>3</sub>-nn transfers the heat more efficiently and allows a faster charging-discharging cyclability due to its higher thermal conductivity. This study confirms the benefits of additive manufacturing to develop a new class of innovative TES for CSP applications.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116975"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008483","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Molten salts, phase change materials commonly employed in thermal energy storage (TES) systems, are widely known to enhance the efficient use and storage of solar energy in concentrated solar power (CSP) plants. Here, three-dimensional TES (3DTES) have been manufactured from highly porous (up to ∼90 %) 3D printed patterned vermiculite (V) and alumina (Al2O3) supports, which have been infiltrated with molten sodium nitrate salt (nn) and solar salt (ss). These 3DTES have been validated under real concentrated solar radiation in a parabolic solar furnace. Among the different 3DTES, those based on V-nn exhibits the best efficiency for the conversion of the incident solar radiation into heat; whereas Al2O3-nn transfers the heat more efficiently and allows a faster charging-discharging cyclability due to its higher thermal conductivity. This study confirms the benefits of additive manufacturing to develop a new class of innovative TES for CSP applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维陶瓷/熔盐结构在真实聚光太阳辐射下的热能储存行为
众所周知,熔盐是热能储存(TES)系统中常用的相变材料,可提高聚光太阳能发电厂(CSP)对太阳能的有效利用和储存。在这里,三维 TES(3DTES)是由高孔隙率(高达 ∼ 90 %)的三维打印图案化蛭石(V)和氧化铝(Al2O3)支撑物制造而成的,这些支撑物已渗入熔融硝酸钠盐(nn)和太阳能盐(ss)。这些 3DTES 已在抛物面太阳炉中的真实聚光太阳辐射条件下进行了验证。在不同的 3DTES 中,基于 V-nn 的 3DTES 将入射太阳辐射转化为热量的效率最高;而 Al2O3-nn 则能更有效地传递热量,并且由于其热传导率更高,充放电循环速度更快。这项研究证实了增材制造在为 CSP 应用开发新型创新 TES 方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
期刊最新文献
Amorphous SiOC-coated submicron mullite aerogels with excellent thermal and structural stability up to 1500 ℃ Oxidation behavior of (Hf0.2Zr0.2Ta0.2Ti0.2Me0.2)B2 (Me=Nb,Cr) high-entropy ceramics at 1200 °C in air Properties of multiple rare earth oxides co-stabilized YDyGdSmNd-TZP ceramics HfB2-SiC ceramics fabricated by reactive melt infiltration and its long-term oxidation behavior at 1650°C Optimized electrostrain with minimal hysteresis at the MPB in BNT-based ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1