Yijiao Ma , Wenyi Xu , Jinrong Qi , Xue Yang , Lichun Feng , Xiaoli Li , Ning Tao , Cunlin Zhang , Jiangang Sun
{"title":"Photothermal measurement of material properties for translucent thermal barrier coatings","authors":"Yijiao Ma , Wenyi Xu , Jinrong Qi , Xue Yang , Lichun Feng , Xiaoli Li , Ning Tao , Cunlin Zhang , Jiangang Sun","doi":"10.1016/j.ndteint.2024.103245","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a photothermal nondestructive method was proposed to measure the material parameters of semi-transparent or translucent thermal barrier coatings (TBCs). We derived a theoretical model for the photothermal signal from a two-layer semi-infinite material system with a translucent first layer after a pulse laser excitation. Its solution was verified by numerical solution. A data regression algorithm based on a least-squares fitting was used for the determination of the material parameters in the translucent first layer material. To verify this new method, an experimental system was set up with a pulse laser for thermal excitation and an infrared camera for image acquisition of the thermal emission transient from several translucent EBPVD TBC samples. The predicted coating thickness is consistent with the measured value by an optical microscope. The predicted thermal conductivity and optical attenuation coefficients in the absorption and emission band are found to be in good agreement with reference values.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103245"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096386952400210X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a photothermal nondestructive method was proposed to measure the material parameters of semi-transparent or translucent thermal barrier coatings (TBCs). We derived a theoretical model for the photothermal signal from a two-layer semi-infinite material system with a translucent first layer after a pulse laser excitation. Its solution was verified by numerical solution. A data regression algorithm based on a least-squares fitting was used for the determination of the material parameters in the translucent first layer material. To verify this new method, an experimental system was set up with a pulse laser for thermal excitation and an infrared camera for image acquisition of the thermal emission transient from several translucent EBPVD TBC samples. The predicted coating thickness is consistent with the measured value by an optical microscope. The predicted thermal conductivity and optical attenuation coefficients in the absorption and emission band are found to be in good agreement with reference values.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.