Jan Peter George , Mari Rusanen , Egbert Beuker , Leena Yrjänä , Volkmar Timmermann , Nenad Potočić , Sakari Välimäki , Heino Konrad
{"title":"Lessons to learn for better safeguarding of genetic resources during tree pandemics: The case of ash dieback in Europe","authors":"Jan Peter George , Mari Rusanen , Egbert Beuker , Leena Yrjänä , Volkmar Timmermann , Nenad Potočić , Sakari Välimäki , Heino Konrad","doi":"10.1016/j.biocon.2024.110802","DOIUrl":null,"url":null,"abstract":"<div><div>Ash dieback (ADB) has been threatening populations of European ash (<em>Fraxinus excelsior & F. angustifolia</em>) for more than three decades. Although much knowledge has been gathered in the recent past, practical conservation measures have been mostly implemented at local scale. Since range contraction in both ash species is likely to be exacerbated already in the near future by westward expansion of the emerald ash borer and climate change, systematic conservation frameworks need to be developed to avoid long-term population-genetic consequences and depletion of genomic diversity. In this article, we address the advantages and obstacles of conservation approaches aiming to conserve genetic diversity in situ or ex situ during tree pandemics. We are reviewing 47 studies which were published on ash dieback to unravel three important dimensions of ongoing conservation approaches or perceived conservation problems: i) conservation philosophy (i.e. natural selection, resistance breeding or genetic conservation), ii) the spatial scale (ecosystem, country, continent), and iii) the integration of genetic safety margins in conservation planning. Although nearly equal proportions of the reviewed studies mention breeding or active conservation as possible long-term solutions, only 17 % consider that additional threats exist which may further reduce genetic diversity in both ash species. We also identify and discuss several knowledge gaps and limitations which may have limited the initiation of conservation projects at national and international level so far. Finally, we demonstrate that there is not much time left for filling these gaps, because European-wide forest health monitoring data indicates a significant decline of ash populations in the last 5 years.</div></div>","PeriodicalId":55375,"journal":{"name":"Biological Conservation","volume":"299 ","pages":"Article 110802"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006320724003641","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Ash dieback (ADB) has been threatening populations of European ash (Fraxinus excelsior & F. angustifolia) for more than three decades. Although much knowledge has been gathered in the recent past, practical conservation measures have been mostly implemented at local scale. Since range contraction in both ash species is likely to be exacerbated already in the near future by westward expansion of the emerald ash borer and climate change, systematic conservation frameworks need to be developed to avoid long-term population-genetic consequences and depletion of genomic diversity. In this article, we address the advantages and obstacles of conservation approaches aiming to conserve genetic diversity in situ or ex situ during tree pandemics. We are reviewing 47 studies which were published on ash dieback to unravel three important dimensions of ongoing conservation approaches or perceived conservation problems: i) conservation philosophy (i.e. natural selection, resistance breeding or genetic conservation), ii) the spatial scale (ecosystem, country, continent), and iii) the integration of genetic safety margins in conservation planning. Although nearly equal proportions of the reviewed studies mention breeding or active conservation as possible long-term solutions, only 17 % consider that additional threats exist which may further reduce genetic diversity in both ash species. We also identify and discuss several knowledge gaps and limitations which may have limited the initiation of conservation projects at national and international level so far. Finally, we demonstrate that there is not much time left for filling these gaps, because European-wide forest health monitoring data indicates a significant decline of ash populations in the last 5 years.
期刊介绍:
Biological Conservation is an international leading journal in the discipline of conservation biology. The journal publishes articles spanning a diverse range of fields that contribute to the biological, sociological, and economic dimensions of conservation and natural resource management. The primary aim of Biological Conservation is the publication of high-quality papers that advance the science and practice of conservation, or which demonstrate the application of conservation principles for natural resource management and policy. Therefore it will be of interest to a broad international readership.