Imparting functionality into porphyrin metal–organic framework aerogels with uniform distributions for diversified applications

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2024-09-30 DOI:10.1016/j.micromeso.2024.113355
Yujun Wang , Peng Zhang , Chuantao Hou
{"title":"Imparting functionality into porphyrin metal–organic framework aerogels with uniform distributions for diversified applications","authors":"Yujun Wang ,&nbsp;Peng Zhang ,&nbsp;Chuantao Hou","doi":"10.1016/j.micromeso.2024.113355","DOIUrl":null,"url":null,"abstract":"<div><div>The incorporation of various functional nanoentities into pure metal–organic framework (MOF) aerogels can not only introduce additional functionality but also expands the application scenarios of MOF aerogels. Herein, a general and simple strategy for uniform incorporation of various functional nanomaterials into a porphyrin MOF aerogel is presented. Specifically, this strategy primarily involves the introduction of a surfactant polyvinylpyrrolidone (PVP) to disperse the nanomaterials in lipophilic solvents, followed by a direct solvothermal reaction with the precursors of the porphyrin MOF aerogel. Additionally, uniform aerogel composites consisting of two MOF components have also been developed by careful optimizing the reaction conditions. The resulting nanoentity@MOF aerogel composites exhibit positive properties that stem from the synergistic effects between the nanoentities and MOF aerogel, offering advanced applications in areas such as photochemical electrochemistry, adsorption and photodegradation, electrochemical oxygen reduction reaction, and fluorescence.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113355"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003779","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of various functional nanoentities into pure metal–organic framework (MOF) aerogels can not only introduce additional functionality but also expands the application scenarios of MOF aerogels. Herein, a general and simple strategy for uniform incorporation of various functional nanomaterials into a porphyrin MOF aerogel is presented. Specifically, this strategy primarily involves the introduction of a surfactant polyvinylpyrrolidone (PVP) to disperse the nanomaterials in lipophilic solvents, followed by a direct solvothermal reaction with the precursors of the porphyrin MOF aerogel. Additionally, uniform aerogel composites consisting of two MOF components have also been developed by careful optimizing the reaction conditions. The resulting nanoentity@MOF aerogel composites exhibit positive properties that stem from the synergistic effects between the nanoentities and MOF aerogel, offering advanced applications in areas such as photochemical electrochemistry, adsorption and photodegradation, electrochemical oxygen reduction reaction, and fluorescence.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为均匀分布的卟啉金属有机框架气凝胶注入功能,实现多样化应用
在纯金属有机框架(MOF)气凝胶中掺入各种功能纳米实体不仅能引入额外的功能,还能拓展 MOF 气凝胶的应用领域。本文介绍了一种将各种功能性纳米材料均匀加入卟啉 MOF 气凝胶的通用而简单的策略。具体来说,该策略主要涉及引入表面活性剂聚乙烯吡咯烷酮(PVP),将纳米材料分散在亲油性溶剂中,然后与卟啉 MOF 气凝胶的前体直接发生溶热反应。此外,通过仔细优化反应条件,还开发出了由两种 MOF 成分组成的均匀气凝胶复合材料。纳米实体@MOF 气凝胶复合材料的良好性能源于纳米实体与 MOF 气凝胶之间的协同效应,可在光化学电化学、吸附与光降解、电化学氧还原反应和荧光等领域提供先进的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Editorial Board Effect of linker hybridization on the wetting of hydrophobic metal-organic frameworks Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes Catalytic COS formation on ion-exchanged LTA zeolites during adsorption Fabrication of LTA zeolite core and UiO-66 shell structures via surface zeta potential modulation and sequential seeded growth for zeolite/polymer composite membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1