Zina-Sabrina Duma , Jouni Susiluoto , Otto Lamminpää , Tuomas Sihvonen , Satu-Pia Reinikainen , Heikki Haario
{"title":"KF-PLS: Optimizing Kernel Partial Least-Squares (K-PLS) with Kernel Flows","authors":"Zina-Sabrina Duma , Jouni Susiluoto , Otto Lamminpää , Tuomas Sihvonen , Satu-Pia Reinikainen , Heikki Haario","doi":"10.1016/j.chemolab.2024.105238","DOIUrl":null,"url":null,"abstract":"<div><div>Partial Least-Squares (PLS) regression is a widely used tool in chemometrics for performing multivariate regression. As PLS has a limited capacity of modelling non-linear relations between the predictor variables and the response, Kernel PLS (K-PLS) has been introduced for modelling non-linear predictor-response relations. Most available studies use fixed kernel parameters, reducing the performance potential of the method. Only a few studies have been conducted on optimizing the kernel parameters for K-PLS. In this article, we propose a methodology for the kernel function optimization based on Kernel Flows (KF), a technique developed for Gaussian Process Regression (GPR). The results are illustrated with four case studies. The case studies represent both numerical examples and real data used in classification and regression tasks. K-PLS optimized with KF, called KF-PLS in this study, is shown to yield good results in all illustrated scenarios, outperforming literature results and other non-linear regression methodologies. In the present study, KF-PLS has been compared to convolutional neural networks (CNN), random trees, ensemble methods, support vector machines (SVM), and GPR, and it has proved to perform very well.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"254 ","pages":"Article 105238"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001783","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Partial Least-Squares (PLS) regression is a widely used tool in chemometrics for performing multivariate regression. As PLS has a limited capacity of modelling non-linear relations between the predictor variables and the response, Kernel PLS (K-PLS) has been introduced for modelling non-linear predictor-response relations. Most available studies use fixed kernel parameters, reducing the performance potential of the method. Only a few studies have been conducted on optimizing the kernel parameters for K-PLS. In this article, we propose a methodology for the kernel function optimization based on Kernel Flows (KF), a technique developed for Gaussian Process Regression (GPR). The results are illustrated with four case studies. The case studies represent both numerical examples and real data used in classification and regression tasks. K-PLS optimized with KF, called KF-PLS in this study, is shown to yield good results in all illustrated scenarios, outperforming literature results and other non-linear regression methodologies. In the present study, KF-PLS has been compared to convolutional neural networks (CNN), random trees, ensemble methods, support vector machines (SVM), and GPR, and it has proved to perform very well.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.