Design of Poly(lactic-co-glycolic acid) nanoparticles in drug delivery by artificial intelligence methods to find the conditions of nanoparticles synthesis
{"title":"Design of Poly(lactic-co-glycolic acid) nanoparticles in drug delivery by artificial intelligence methods to find the conditions of nanoparticles synthesis","authors":"Bader Huwaimel , Saad Alqarni","doi":"10.1016/j.chemolab.2025.105335","DOIUrl":null,"url":null,"abstract":"<div><div>Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used polymers for drug delivery due to its biodegradable property. Production of PLGA particles in nanosized scale would be of great importance to exploit the properties of this polymer for nano-based drug delivery. This work explores machine learning methods for the PLGA regression tasks of particle size (nm) prediction and Zeta potential (mV) in the synthesis process. Utilizing a comprehensive dataset with categorical inputs (PLGA type and anti-solvent type) and numerical inputs (PLGA concentration and anti-solvent concentration), the research incorporates Isolation Forest for outlier detection, Min-Max Normalization, and One-Hot Encoding for preprocessing. Several regression models including LASSO, Polynomial Regression (PR), and Support Vector Regression (SVR) were employed in combination with Bagging Ensemble methods for enhanced predictive performance. Glowworm Swarm Optimization (GSO) was applied for hyperparameter tuning. The results indicate that BAG-SVR attained the highest test R<sup>2</sup> of 0.9422 for particle size prediction. For Zeta potential prediction, BAG-PR outperformed other models, achieving a test R<sup>2</sup> score of 0.98881.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"258 ","pages":"Article 105335"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000206","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used polymers for drug delivery due to its biodegradable property. Production of PLGA particles in nanosized scale would be of great importance to exploit the properties of this polymer for nano-based drug delivery. This work explores machine learning methods for the PLGA regression tasks of particle size (nm) prediction and Zeta potential (mV) in the synthesis process. Utilizing a comprehensive dataset with categorical inputs (PLGA type and anti-solvent type) and numerical inputs (PLGA concentration and anti-solvent concentration), the research incorporates Isolation Forest for outlier detection, Min-Max Normalization, and One-Hot Encoding for preprocessing. Several regression models including LASSO, Polynomial Regression (PR), and Support Vector Regression (SVR) were employed in combination with Bagging Ensemble methods for enhanced predictive performance. Glowworm Swarm Optimization (GSO) was applied for hyperparameter tuning. The results indicate that BAG-SVR attained the highest test R2 of 0.9422 for particle size prediction. For Zeta potential prediction, BAG-PR outperformed other models, achieving a test R2 score of 0.98881.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.