Min Feng , Xing Liu , Stephen J. Harris , Brian W. Sheldon , Yue Qi
{"title":"A multiscale model to understand the interface chemistry, contacts, and dynamics during lithium stripping","authors":"Min Feng , Xing Liu , Stephen J. Harris , Brian W. Sheldon , Yue Qi","doi":"10.1016/j.jmps.2024.105878","DOIUrl":null,"url":null,"abstract":"<div><div>A reversible Li-metal electrode, paired with a solid electrolyte, is critical for attaining higher energy density and safer batteries beyond the current lithium-ion cells. A stable stripping process may be even harder to attain as the stripping process will remove Li-atoms from the surface, and naturally reduce surface contact area, if not self-corrected by other mechanisms, such as diffusion and plastic deformation under an applied external stack pressure. Here, we capture these mechanisms occurring at multiple length- and time- scales, i.e., interface interactions, vacancy hopping, and plastic deformation, by integrating density functional theory (DFT) simulations, kinetic Monte Carlo (KMC), and continuum finite element method (FEM). By assuming the self-affine nature of multiscale contacts, we predict the steady-state contact area as a function of stripping current density, interface wettability, and stack pressure. We further estimate the exponential increase of overpotential due to contact area loss to maintain the same stripping current density. We demonstrate that a lithiophilic interface requires less stack pressure to reach the same steady-state contact area fraction than a lithiophobic interface. A “tolerable steady-state” contact area loss for maintaining stable stripping is estimated at 20 %, corresponding to a 10 % increase in overpotential. To constrain contact loss within the tolerance, the required stack pressure is 0.1, 0.5, and 2 times the yield strength of lithium metal for three distinct interfaces, lithiophilic Li/lithium oxide(Li<sub>2</sub>O), Li/lithium lanthanum zirconium oxide(LLZO), and lithiophoblic Li/lithium fluoride(LiF), respectively. The modeling results agree with experiments on the impact of the stack pressure quantitatively, while the discrepancy in stripping rate sensitivity is attributed to the simplifying interface interaction in our simulations. Overall, this multiscale simulation framework demonstrates the importance of electrochemical-mechanical coupling in understanding the dynamics of the Li/SE interface during stripping.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105878"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003442","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A reversible Li-metal electrode, paired with a solid electrolyte, is critical for attaining higher energy density and safer batteries beyond the current lithium-ion cells. A stable stripping process may be even harder to attain as the stripping process will remove Li-atoms from the surface, and naturally reduce surface contact area, if not self-corrected by other mechanisms, such as diffusion and plastic deformation under an applied external stack pressure. Here, we capture these mechanisms occurring at multiple length- and time- scales, i.e., interface interactions, vacancy hopping, and plastic deformation, by integrating density functional theory (DFT) simulations, kinetic Monte Carlo (KMC), and continuum finite element method (FEM). By assuming the self-affine nature of multiscale contacts, we predict the steady-state contact area as a function of stripping current density, interface wettability, and stack pressure. We further estimate the exponential increase of overpotential due to contact area loss to maintain the same stripping current density. We demonstrate that a lithiophilic interface requires less stack pressure to reach the same steady-state contact area fraction than a lithiophobic interface. A “tolerable steady-state” contact area loss for maintaining stable stripping is estimated at 20 %, corresponding to a 10 % increase in overpotential. To constrain contact loss within the tolerance, the required stack pressure is 0.1, 0.5, and 2 times the yield strength of lithium metal for three distinct interfaces, lithiophilic Li/lithium oxide(Li2O), Li/lithium lanthanum zirconium oxide(LLZO), and lithiophoblic Li/lithium fluoride(LiF), respectively. The modeling results agree with experiments on the impact of the stack pressure quantitatively, while the discrepancy in stripping rate sensitivity is attributed to the simplifying interface interaction in our simulations. Overall, this multiscale simulation framework demonstrates the importance of electrochemical-mechanical coupling in understanding the dynamics of the Li/SE interface during stripping.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.