{"title":"The combined leaching of copper, gold and uranium in chloride solutions. I. Chalcopyrite","authors":"M. Nicol , K. Ye , N. Garrard","doi":"10.1016/j.hydromet.2024.106406","DOIUrl":null,"url":null,"abstract":"<div><div>In a study (Part II) aimed at the simultaneous heap leaching of copper (predominantly chalcopyrite), gold and uranium from an ore, it was found that this could be achieved using chlorate as the oxidant in chloride solutions. As a result, a more detailed study has been made using electrochemical and batch leach tests on pure chalcopyrite electrodes under typical heap leach conditions.</div><div>The use of chlorate at moderately low concentrations has shown that enhanced rates of dissolution of chalcopyrite can be maintained over periods up to 4 days at ambient temperatures in acidic chloride solutions. The rate of dissolution is enhanced at higher acid concentrations. The rate in the presence of chlorate does not appear to depend on the iron(III) (and presumably the copper(II)) concentration.</div><div>The observed rates are significantly greater than those predicted for oxidative dissolution from the electrochemistry and the mixed potential model. An alternative non-oxidative mechanism has been revisited to account for this difference.</div><div>A preliminary measurement has been made of the kinetics of the oxidation of hydrogen sufide and iron(III) by low concentrations of chlorine produced by reaction of chlorate with chloride ions. These reactions are rapid, and theory shows that they would support the proposed non-oxidative mechanism.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"231 ","pages":"Article 106406"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24001464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In a study (Part II) aimed at the simultaneous heap leaching of copper (predominantly chalcopyrite), gold and uranium from an ore, it was found that this could be achieved using chlorate as the oxidant in chloride solutions. As a result, a more detailed study has been made using electrochemical and batch leach tests on pure chalcopyrite electrodes under typical heap leach conditions.
The use of chlorate at moderately low concentrations has shown that enhanced rates of dissolution of chalcopyrite can be maintained over periods up to 4 days at ambient temperatures in acidic chloride solutions. The rate of dissolution is enhanced at higher acid concentrations. The rate in the presence of chlorate does not appear to depend on the iron(III) (and presumably the copper(II)) concentration.
The observed rates are significantly greater than those predicted for oxidative dissolution from the electrochemistry and the mixed potential model. An alternative non-oxidative mechanism has been revisited to account for this difference.
A preliminary measurement has been made of the kinetics of the oxidation of hydrogen sufide and iron(III) by low concentrations of chlorine produced by reaction of chlorate with chloride ions. These reactions are rapid, and theory shows that they would support the proposed non-oxidative mechanism.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.