Application of a finite element method variant in nonconvex domains to parabolic problems

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2024-10-04 DOI:10.1016/j.finel.2024.104265
Anjaly Anand , Tamal Pramanick , Abhishek Das
{"title":"Application of a finite element method variant in nonconvex domains to parabolic problems","authors":"Anjaly Anand ,&nbsp;Tamal Pramanick ,&nbsp;Abhishek Das","doi":"10.1016/j.finel.2024.104265","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we address one of the major difficulties which is the nonconvex behavior of the domains while finding the solution of the problems. The part of the domain where the nonsmoothness appears is where the challenge arises and the way that area is handled using different numerical methods reveals the effectiveness of these techniques. Here in this article, we study the semilinear parabolic problem in nonconvex polygonal domain. For the approximation of the solution we use the Composite Finite Element (CFE) method, which is a classification of the Finite Element Method. CFE discusses the two-scale discretization — the larger mesh also known as the coarse mesh with the size <span><math><mi>H</mi></math></span> and the smaller mesh, also known as the fine mesh with the size <span><math><mi>h</mi></math></span>. It helps in reducing the dimension of the domain space of consideration. The fine scale grid is used to resolve the nonconvexity of the boundary whereas the coarse scale grid is comprised of larger grids at an appropriate distance from the boundary. The degrees of freedom depends on the coarse grid. This is the precedence of CFE over other methods, i.e., it eases the task of reducing the domain complexity. In this article, we consider two approaches — the semi discrete analysis where only space discretization is carried out, and the fully discrete analysis where both the time and space discretization is done using both backward Euler and Crank–Nicolson method. We study the error analysis in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-norm and in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-norm for the semidiscrete case whereas for the fully discrete case, we study the error analysis in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-norm. Also, we check for the optimal results. For the CFE technique in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-norm, we derive the convergence having optimal order in time and almost optimal order in space even if the domain is nonconvex. We consider a T-shaped domain and another star shaped domain to carry out the theoretical findings. Thereafter, numerical computations are implemented to validate the theoretical results.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"242 ","pages":"Article 104265"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we address one of the major difficulties which is the nonconvex behavior of the domains while finding the solution of the problems. The part of the domain where the nonsmoothness appears is where the challenge arises and the way that area is handled using different numerical methods reveals the effectiveness of these techniques. Here in this article, we study the semilinear parabolic problem in nonconvex polygonal domain. For the approximation of the solution we use the Composite Finite Element (CFE) method, which is a classification of the Finite Element Method. CFE discusses the two-scale discretization — the larger mesh also known as the coarse mesh with the size H and the smaller mesh, also known as the fine mesh with the size h. It helps in reducing the dimension of the domain space of consideration. The fine scale grid is used to resolve the nonconvexity of the boundary whereas the coarse scale grid is comprised of larger grids at an appropriate distance from the boundary. The degrees of freedom depends on the coarse grid. This is the precedence of CFE over other methods, i.e., it eases the task of reducing the domain complexity. In this article, we consider two approaches — the semi discrete analysis where only space discretization is carried out, and the fully discrete analysis where both the time and space discretization is done using both backward Euler and Crank–Nicolson method. We study the error analysis in the L(L2)-norm and in the L(H1)-norm for the semidiscrete case whereas for the fully discrete case, we study the error analysis in the L(L2)-norm. Also, we check for the optimal results. For the CFE technique in the L(L2)-norm, we derive the convergence having optimal order in time and almost optimal order in space even if the domain is nonconvex. We consider a T-shaped domain and another star shaped domain to carry out the theoretical findings. Thereafter, numerical computations are implemented to validate the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非凸域有限元法变体在抛物线问题中的应用
在本文中,我们解决了一个主要难题,即在寻找问题解决方案时域的非凸行为。非平滑性出现的域部分是难题所在,使用不同数值方法处理该区域的方式揭示了这些技术的有效性。在本文中,我们将研究非凸多边形域中的半线性抛物线问题。为了近似求解,我们使用了复合有限元(CFE)方法,它是有限元方法的一个分类。CFE 讨论了两种尺度的离散化--尺寸为 H 的较大网格(也称为粗网格)和尺寸为 h 的较小网格(也称为细网格)。细网格用于解决边界的不凸性问题,而粗网格则由与边界保持适当距离的较大网格组成。自由度取决于粗网格。这是 CFE 方法优于其他方法的地方,即它简化了降低域复杂性的任务。在本文中,我们考虑了两种方法--只进行空间离散化的半离散分析和同时使用后向欧拉法和 Crank-Nicolson 法进行时间和空间离散化的全离散分析。我们研究了半离散情况下 L∞(L2)规范和 L∞(H1)规范下的误差分析,而对于完全离散情况,我们研究了 L∞(L2)规范下的误差分析。此外,我们还检查了最优结果。对于 L∞(L2) 规范下的 CFE 技术,我们推导出了在时间上具有最优阶次、在空间上几乎具有最优阶次的收敛性,即使域是非凸的。我们考虑了一个 T 形域和另一个星形域,以得出理论结论。之后,我们进行了数值计算来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Application of zonal Reduced-Order-Modeling to tire rolling simulation An enhanced single Gaussian point continuum finite element formulation using automatic differentiation Robust multi-physical-material topology optimization with thermal-self-weight uncertain loads Sequential sensor placement for damage detection under frequency-domain dynamics An assumed enhanced strain finite element formulation for modeling hydraulic fracture growth in a thermoporoelastic medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1