Plant growth promoting signatory volatiles emitted by a drought-tolerant bacterium Bacillus altitudinis FD48 and its role in moisture stress alleviation in rice (Oryza sativa L.)
{"title":"Plant growth promoting signatory volatiles emitted by a drought-tolerant bacterium Bacillus altitudinis FD48 and its role in moisture stress alleviation in rice (Oryza sativa L.)","authors":"Shobana Narayanasamy, Sivakumar Uthandi","doi":"10.1016/j.stress.2024.100621","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing evidence implies that bacterial volatile organic compounds (bVOCs) play a significant role in plant-microbe interaction. Plant associated bacteria produces plant growth modulating volatiles elicits induced systemic tolerance (IST) in plants against a multitude of abiotic stress. Induction of IST and plant growth promotion by signatory bVOCs of <em>Bacillus altitudinis</em> FD48 against drought are reported in this study. The rice seedlings exposed to bVOCs blends of FD48 showed a one-fold increase in whole plant biomass and auxin content (3 µmol g<sup>-1</sup> FW) under induced moisture stress. The effect of bVOCs highly depends on the inoculum load. Higher inoculum quantity (100 µL) is detrimental to plant growth. bVOCs produced by FD48 profiled at different growth intervals in GC–MS-ATD revealed a total of 40 bioactive compounds both under stress (PEG 6000) and non-stressed conditions. Interestingly, potential plant growth-promoting compounds such as 1-Hexanol, 2,3-butanediol, dimethyl disulfide, benzene, butanoic acid, pentadecane, and acetic acid are more pronounced. Few compounds produced under non-stress were found to increase during stress (example, 2,3-Butanediol, and acetic acid). This study unraveled the significant biosynthetic pathways induced by FD48 bVOC blends, such as pyruvate metabolism, tryptophan metabolism, sulfur metabolism, fatty acid biosynthesis, and ethanol degradation that anchors in abating moisture stress. Hence, it can be concluded that PGPB <em>B. altitudinis</em> FD48 produced bVOCs could be potential orchestrators of induced systemic tolerance in plants against moisture stress.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100621"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidence implies that bacterial volatile organic compounds (bVOCs) play a significant role in plant-microbe interaction. Plant associated bacteria produces plant growth modulating volatiles elicits induced systemic tolerance (IST) in plants against a multitude of abiotic stress. Induction of IST and plant growth promotion by signatory bVOCs of Bacillus altitudinis FD48 against drought are reported in this study. The rice seedlings exposed to bVOCs blends of FD48 showed a one-fold increase in whole plant biomass and auxin content (3 µmol g-1 FW) under induced moisture stress. The effect of bVOCs highly depends on the inoculum load. Higher inoculum quantity (100 µL) is detrimental to plant growth. bVOCs produced by FD48 profiled at different growth intervals in GC–MS-ATD revealed a total of 40 bioactive compounds both under stress (PEG 6000) and non-stressed conditions. Interestingly, potential plant growth-promoting compounds such as 1-Hexanol, 2,3-butanediol, dimethyl disulfide, benzene, butanoic acid, pentadecane, and acetic acid are more pronounced. Few compounds produced under non-stress were found to increase during stress (example, 2,3-Butanediol, and acetic acid). This study unraveled the significant biosynthetic pathways induced by FD48 bVOC blends, such as pyruvate metabolism, tryptophan metabolism, sulfur metabolism, fatty acid biosynthesis, and ethanol degradation that anchors in abating moisture stress. Hence, it can be concluded that PGPB B. altitudinis FD48 produced bVOCs could be potential orchestrators of induced systemic tolerance in plants against moisture stress.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.