{"title":"A critical review focussing on the synthesis and applications of monoclinic yttrium oxide nanophosphor","authors":"Soorya G Nath , Anila E I","doi":"10.1016/j.materresbull.2024.113128","DOIUrl":null,"url":null,"abstract":"<div><div>Research on monoclinic Y<sub>2</sub>O<sub>3</sub> has been limited, not because of a lack of potential applications, but rather due to challenges associated with synthesizing phase-pure material. The limited understanding of the material and its properties has hindered researchers from further exploring this compound. Some studies suggest that the B-type polymorph of Y<sub>2</sub>O<sub>3</sub> exhibits superior performance compared to its cubic counterpart. Additionally, there are reports indicating the existence of simple synthesis techniques that could potentially overcome the material's significant disadvantage highlighted by many researchers, namely, complex synthesis routes. To date, no comprehensive reports have summarized the key findings related to B-type Y<sub>2</sub>O<sub>3</sub>. In this effort, we aim to provide an exhaustive overview of research conducted on this polymorph. This includes an examination of diverse synthesis techniques employed by researchers, theoretical studies conducted on the material, an exploration of its luminescence properties, and an overview of various applications studied thus far.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113128"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004586","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Research on monoclinic Y2O3 has been limited, not because of a lack of potential applications, but rather due to challenges associated with synthesizing phase-pure material. The limited understanding of the material and its properties has hindered researchers from further exploring this compound. Some studies suggest that the B-type polymorph of Y2O3 exhibits superior performance compared to its cubic counterpart. Additionally, there are reports indicating the existence of simple synthesis techniques that could potentially overcome the material's significant disadvantage highlighted by many researchers, namely, complex synthesis routes. To date, no comprehensive reports have summarized the key findings related to B-type Y2O3. In this effort, we aim to provide an exhaustive overview of research conducted on this polymorph. This includes an examination of diverse synthesis techniques employed by researchers, theoretical studies conducted on the material, an exploration of its luminescence properties, and an overview of various applications studied thus far.
对单斜Y2O3的研究一直很有限,这并不是因为缺乏潜在的应用,而是因为合成相纯材料所面临的挑战。对这种材料及其特性的有限了解阻碍了研究人员进一步探索这种化合物。一些研究表明,Y2O3 的 B 型多晶体比其立方体具有更优越的性能。此外,也有报告指出存在简单的合成技术,有可能克服许多研究人员强调的该材料的主要缺点,即复杂的合成路线。迄今为止,还没有任何全面的报告总结了与 B 型 Y2O3 有关的重要发现。在这项工作中,我们的目标是提供有关这种多晶体研究的详尽概述。其中包括研究人员采用的各种合成技术、对该材料进行的理论研究、对其发光特性的探讨以及对迄今为止研究的各种应用的概述。
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.