A dynamic system reliability analysis model on safety instrumented systems

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL Journal of Loss Prevention in The Process Industries Pub Date : 2024-10-09 DOI:10.1016/j.jlp.2024.105455
{"title":"A dynamic system reliability analysis model on safety instrumented systems","authors":"","doi":"10.1016/j.jlp.2024.105455","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel hybrid dynamic model for complex systems reliability assessment. The model synergizes expert knowledge elicitation and an enhanced Dempster-Shafer Theory (DST) with Dynamic Bayesian Networks (DBNs) modeling, aiming to surmount the limitations such as uncertainty and static modeling inherent in traditional methods. The proposed model is deployed on a Safety Instrumented System (SIS) designed to prevent runaway reactions within a Continuously Stirred Tank Reactor (CSTR), considering factors such as system degradation, human interventions, and proof testing on system reliability. The analysis pinpointed the logic solver subsystem as the principal vulnerability within the assessed SIS, leading to targeted recommendations to bolster system reliability. The outcomes offer insights for a wide range of safety-critical systems aiming to augment the safety and efficacy of SISs, thereby advancing safety and resilience management across various complex engineering systems, particularly in contexts where field data is scant.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024002134","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel hybrid dynamic model for complex systems reliability assessment. The model synergizes expert knowledge elicitation and an enhanced Dempster-Shafer Theory (DST) with Dynamic Bayesian Networks (DBNs) modeling, aiming to surmount the limitations such as uncertainty and static modeling inherent in traditional methods. The proposed model is deployed on a Safety Instrumented System (SIS) designed to prevent runaway reactions within a Continuously Stirred Tank Reactor (CSTR), considering factors such as system degradation, human interventions, and proof testing on system reliability. The analysis pinpointed the logic solver subsystem as the principal vulnerability within the assessed SIS, leading to targeted recommendations to bolster system reliability. The outcomes offer insights for a wide range of safety-critical systems aiming to augment the safety and efficacy of SISs, thereby advancing safety and resilience management across various complex engineering systems, particularly in contexts where field data is scant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全仪表系统的动态系统可靠性分析模型
本文介绍了一种用于复杂系统可靠性评估的新型混合动态模型。该模型将专家知识征询和增强型 Dempster-Shafer 理论(DST)与动态贝叶斯网络(DBN)建模相结合,旨在克服传统方法固有的不确定性和静态建模等局限性。考虑到系统退化、人为干预和系统可靠性验证测试等因素,提出的模型被部署在一个安全仪表系统(SIS)上,该系统旨在防止连续搅拌槽反应器(CSTR)内的失控反应。分析指出,逻辑解算子系统是所评估的 SIS 系统中的主要薄弱环节,从而为提高系统可靠性提出了有针对性的建议。分析结果为各种安全关键型系统提供了启示,旨在增强 SIS 的安全性和有效性,从而推进各种复杂工程系统的安全和弹性管理,尤其是在现场数据稀缺的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
期刊最新文献
Research on the diffusion and control of unsafe behaviors among chemical industry park enterprises based on the SEIR evolutionary game model Experimental study on hydrogen pipeline leakage: Negative pressure wave characteristics and inline detection method A dynamic system reliability analysis model on safety instrumented systems Effect of ambient pressure on the fire characteristics of lithium-ion battery energy storage container Incident investigation of hydrogen explosion and fire in a residue desulfurization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1