Tasrina Rabia Choudhury , Md. Sajjad Hossain Sajib , Sheikh Fahim Faysal Sowrav , Shahidur R. Khan , M. Nur E. Alam , Md. Nurul Amin
{"title":"Nanostructured bi-metallic biochar: An innovative approach for arsenic (III) removal from contaminated water","authors":"Tasrina Rabia Choudhury , Md. Sajjad Hossain Sajib , Sheikh Fahim Faysal Sowrav , Shahidur R. Khan , M. Nur E. Alam , Md. Nurul Amin","doi":"10.1016/j.enceco.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Possessing variable valence states, the element Arsenic (As) is intimidating the quality of the ecology and human health severely. In this study, eliminating As (III) from water-based solutions with great efficiency was done using Bagasse-Mn-Al, a sugarcane bagasse-derived biochar impregnated with Mn and Al. The Bagasse-Mn-Al composite yielded higher removal efficiency towards As (III) than the biochar itself. About 89.53 % of As (III) was removed within 65 min maintaining the very first concentration of As (III) at 400 μg/L, initial pH at 2–2.5, and adsorbent dosage at 0.625 g/L. The Bagasse-Mn-Al composite showed an adsorption potential maximum of 54.945 mg/g which is superior to most of the cheaply synthesized metal-impregnated biochar reported. Results from a variety of characterization techniques indicated that the •OH free radical in the Bagasse-Mn-Al composite mainly contributed to the removal of As (III) where oxidation and complexation were the major mechanisms. With high catalytic efficiency, this cost effectively produced metal-coated biochar showed easy and effective separation of As (III) from aqueous solution. Further, this study focuses on the high potential of Bagasse-Mn-Al adsorbent in the treatment of both ground and wastewater.</div></div>","PeriodicalId":100480,"journal":{"name":"Environmental Chemistry and Ecotoxicology","volume":"7 ","pages":"Pages 10-18"},"PeriodicalIF":9.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry and Ecotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590182624000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Possessing variable valence states, the element Arsenic (As) is intimidating the quality of the ecology and human health severely. In this study, eliminating As (III) from water-based solutions with great efficiency was done using Bagasse-Mn-Al, a sugarcane bagasse-derived biochar impregnated with Mn and Al. The Bagasse-Mn-Al composite yielded higher removal efficiency towards As (III) than the biochar itself. About 89.53 % of As (III) was removed within 65 min maintaining the very first concentration of As (III) at 400 μg/L, initial pH at 2–2.5, and adsorbent dosage at 0.625 g/L. The Bagasse-Mn-Al composite showed an adsorption potential maximum of 54.945 mg/g which is superior to most of the cheaply synthesized metal-impregnated biochar reported. Results from a variety of characterization techniques indicated that the •OH free radical in the Bagasse-Mn-Al composite mainly contributed to the removal of As (III) where oxidation and complexation were the major mechanisms. With high catalytic efficiency, this cost effectively produced metal-coated biochar showed easy and effective separation of As (III) from aqueous solution. Further, this study focuses on the high potential of Bagasse-Mn-Al adsorbent in the treatment of both ground and wastewater.