Madhusmita Sahoo , Kalyan Ghosh , Swayamprakash Sahoo , Pratap K. Sahoo , Tom Mathews , Sandip Dhara
{"title":"Determination of thermal conductivity of phase pure 10H-SiC thin films by non-destructive Raman thermometry","authors":"Madhusmita Sahoo , Kalyan Ghosh , Swayamprakash Sahoo , Pratap K. Sahoo , Tom Mathews , Sandip Dhara","doi":"10.1016/j.tsf.2024.140536","DOIUrl":null,"url":null,"abstract":"<div><div>The 10 H SiC thin films are potential candidates for devices that can be used in high temperature and high radiation environment. Measurement of thermal conductivity of thin films by a non-invasive method is very useful for such device fabrication. Micro-Raman method serves as an important tool in this aspect and is known as Raman thermometry. It utilises a steady-state heat transfer model in a semi-infinite half space and provides for an effective technique to measure thermal conductivity of films as a function of film thickness and laser spot size. This method has two limiting conditions i.e. thick film limit and thin film limit. The limiting conditions of this model was explored by simulating the model for different film thicknesses at constant laser spot size. 10H SiC films of three different thicknesses i.e. 104, 135 and 156 nm were chosen to validate the thin film limiting condition. Thermal conductivity of these thin films varied from 0.60 – 4.80 <span><math><mrow><mo>(</mo><msup><mrow><mi>Wm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"807 ","pages":"Article 140536"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003377","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The 10 H SiC thin films are potential candidates for devices that can be used in high temperature and high radiation environment. Measurement of thermal conductivity of thin films by a non-invasive method is very useful for such device fabrication. Micro-Raman method serves as an important tool in this aspect and is known as Raman thermometry. It utilises a steady-state heat transfer model in a semi-infinite half space and provides for an effective technique to measure thermal conductivity of films as a function of film thickness and laser spot size. This method has two limiting conditions i.e. thick film limit and thin film limit. The limiting conditions of this model was explored by simulating the model for different film thicknesses at constant laser spot size. 10H SiC films of three different thicknesses i.e. 104, 135 and 156 nm were chosen to validate the thin film limiting condition. Thermal conductivity of these thin films varied from 0.60 – 4.80 .
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.