Injectable, oxygen-releasing, thermosensitive hydrogel promotes vascularized bone formation with prolonged oxygen delivery and improved osteoinductivity

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-09-27 DOI:10.1016/j.mtbio.2024.101267
Yixin Xu , Shaowei Zheng , Zinan Tang , Qiang Zhong , Rong Chen , Pinkai Wang , Jinlang Fu , Jiajun Xie , Yanhong Ning , Mingyuan Lei , Ding Wang , Huaming Mai , Hao Li , Chunhan Sun , Zhanjun Shi , Hao Cheng , Zhe Shi
{"title":"Injectable, oxygen-releasing, thermosensitive hydrogel promotes vascularized bone formation with prolonged oxygen delivery and improved osteoinductivity","authors":"Yixin Xu ,&nbsp;Shaowei Zheng ,&nbsp;Zinan Tang ,&nbsp;Qiang Zhong ,&nbsp;Rong Chen ,&nbsp;Pinkai Wang ,&nbsp;Jinlang Fu ,&nbsp;Jiajun Xie ,&nbsp;Yanhong Ning ,&nbsp;Mingyuan Lei ,&nbsp;Ding Wang ,&nbsp;Huaming Mai ,&nbsp;Hao Li ,&nbsp;Chunhan Sun ,&nbsp;Zhanjun Shi ,&nbsp;Hao Cheng ,&nbsp;Zhe Shi","doi":"10.1016/j.mtbio.2024.101267","DOIUrl":null,"url":null,"abstract":"<div><div>The failure or delay in healing of critical bone defects is primarily due to early local anoxic conditions and reduced osteogenic activity. In this research, we integrated calcium peroxide (CPO) embedded polycaprolactone (PCL) microspheres and osteoinductive nanoparticles (Hydroxyapatite/Laponite) into a thermosensitive hydrogel (Pluronic F127), thereby formulating an injectable oxygen-releasing osteogenic thermosensitive hydrogel. Notably, the oxygen-releasing microspheres (ORMs) within the composite hydrogel provide stable oxygen release for up to 21 days, ensuring the survival, migration, and bioactivity of both mesenchymal stem cells and endothelial cells under anoxic conditions. Additionally, the composite hydrogel significantly augments the osteogenic potential of bone marrow mesenchymal stem cells by providing a biomimetic microenvironment with the incorporation of nano-hydroxyapatite/laponite. Ultimately, the injectable composite hydrogel successfully stimulated bone regeneration within a cranial defect in a rat model after 8 weeks, with enhanced vascularization and bone quality. The engineered hydrogel provides a minimally invasive approach to stimulate bone regeneration with a sustained oxygen supply and osteogenic microenvironment provision, underlining its potential for treating critical bone defects.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101267"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003284","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The failure or delay in healing of critical bone defects is primarily due to early local anoxic conditions and reduced osteogenic activity. In this research, we integrated calcium peroxide (CPO) embedded polycaprolactone (PCL) microspheres and osteoinductive nanoparticles (Hydroxyapatite/Laponite) into a thermosensitive hydrogel (Pluronic F127), thereby formulating an injectable oxygen-releasing osteogenic thermosensitive hydrogel. Notably, the oxygen-releasing microspheres (ORMs) within the composite hydrogel provide stable oxygen release for up to 21 days, ensuring the survival, migration, and bioactivity of both mesenchymal stem cells and endothelial cells under anoxic conditions. Additionally, the composite hydrogel significantly augments the osteogenic potential of bone marrow mesenchymal stem cells by providing a biomimetic microenvironment with the incorporation of nano-hydroxyapatite/laponite. Ultimately, the injectable composite hydrogel successfully stimulated bone regeneration within a cranial defect in a rat model after 8 weeks, with enhanced vascularization and bone quality. The engineered hydrogel provides a minimally invasive approach to stimulate bone regeneration with a sustained oxygen supply and osteogenic microenvironment provision, underlining its potential for treating critical bone defects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可注射、释放氧气、热敏性水凝胶可促进血管化骨形成,延长氧气输送时间,提高骨诱导性
严重骨缺损愈合失败或延迟的主要原因是早期局部缺氧条件和成骨活性降低。在这项研究中,我们将内嵌过氧化钙(CPO)的聚己内酯(PCL)微球和诱导骨生成的纳米颗粒(羟基磷灰石/皂石)整合到热敏性水凝胶(Pluronic F127)中,从而配制出一种可注射的释氧致骨热敏性水凝胶。值得注意的是,复合水凝胶中的释氧微球(ORMs)可提供长达 21 天的稳定释氧,确保间充质干细胞和内皮细胞在缺氧条件下的存活、迁移和生物活性。此外,该复合水凝胶通过加入纳米羟基磷灰石/皂石提供仿生微环境,显著增强了骨髓间充质干细胞的成骨潜能。最终,这种可注射的复合水凝胶在 8 周后成功刺激了大鼠模型颅骨缺损处的骨再生,并增强了血管生成和骨质量。这种工程水凝胶提供了一种微创方法,通过持续供氧和提供成骨微环境来刺激骨再生,从而凸显了它在治疗严重骨缺损方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
A novel nanomedicine integrating ferroptosis and photothermal therapy, well-suitable for PD-L1-mediated immune checkpoint blockade Nickel–titanium alloy porous scaffolds based on a dominant cellular structure manufactured by laser powder bed fusion have satisfactory osteogenic efficacy A high-water retention, self-healing hydrogel thyroid model for surgical training Injectable microgels containing genetically engineered bacteria for colon cancer therapy through programmed Chemokine expression Multifunctional hydrogels loaded with tellurium nanozyme for spinal cord injury repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1