A general method to synthesize planar overconstrained mechanism

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-10-05 DOI:10.1016/j.mechmachtheory.2024.105801
Cody Leeheng Chan
{"title":"A general method to synthesize planar overconstrained mechanism","authors":"Cody Leeheng Chan","doi":"10.1016/j.mechmachtheory.2024.105801","DOIUrl":null,"url":null,"abstract":"<div><div>Traditionally, planar overconstrained mechanisms has been explained through special geometry, which often lacks clarity and specificity. This paper addresses this challenge by introducing two explicit criteria for analyzing and synthesizing planar overconstrained mechanisms. With the criteria, one may synthesize new planar overconstrained systematically and confidently. To create new planar overconstrained mechanisms, three approaches are employed: the parallelogram-aided approach, the stretch-rotation approach, and an optimization-based method. Given that the mobility of mechanisms is independent of the choice of the ground link and that the mathematical treatment of function generation is straightforward, this paper proposes a systematic approach for synthesizing novel function cognates. By combining these approaches, new types of overconstrained mechanisms are discovered. Leveraging advanced computational tools, a special geometric condition for function cognates of inverted slider cranks is found for the first time. Through inversion, the coupler cognates for slider cranks are also identified. The success of these results indicates that the proposed criteria are explicit and crucial for discovering new mechanisms, and the concept may be extended to spherical or spatial cases.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105801"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002283","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, planar overconstrained mechanisms has been explained through special geometry, which often lacks clarity and specificity. This paper addresses this challenge by introducing two explicit criteria for analyzing and synthesizing planar overconstrained mechanisms. With the criteria, one may synthesize new planar overconstrained systematically and confidently. To create new planar overconstrained mechanisms, three approaches are employed: the parallelogram-aided approach, the stretch-rotation approach, and an optimization-based method. Given that the mobility of mechanisms is independent of the choice of the ground link and that the mathematical treatment of function generation is straightforward, this paper proposes a systematic approach for synthesizing novel function cognates. By combining these approaches, new types of overconstrained mechanisms are discovered. Leveraging advanced computational tools, a special geometric condition for function cognates of inverted slider cranks is found for the first time. Through inversion, the coupler cognates for slider cranks are also identified. The success of these results indicates that the proposed criteria are explicit and crucial for discovering new mechanisms, and the concept may be extended to spherical or spatial cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成平面超约束机制的一般方法
传统上,平面超约束机制是通过特殊几何来解释的,这往往缺乏清晰性和具体性。本文针对这一挑战,提出了两个明确的标准,用于分析和综合平面超约束机制。有了这些标准,人们就可以系统而自信地合成新的平面超约束。为了创建新的平面超约束机构,我们采用了三种方法:平行四边形辅助方法、拉伸旋转方法和基于优化的方法。鉴于机构的流动性与地面链接的选择无关,而且函数生成的数学处理简单明了,本文提出了一种合成新型函数同源物的系统方法。通过结合这些方法,我们发现了新型超约束机制。利用先进的计算工具,本文首次发现了倒置滑块曲柄功能同源物的特殊几何条件。通过反演,还确定了滑块曲柄的耦合器同源物。这些结果的成功表明,所提出的标准是明确的,对于发现新机制至关重要,而且这一概念可以扩展到球形或空间情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Order-of-magnitude increased range of constant force adjustment via section optimization Enhancing anti-disturbance performance of redundant cable-driven parallel robots: Analysis and tension distribution method Design and analysis of an origami-inspired redundant rigid-flexible coupling deployable manipulator Design and analysis of a novel octopod platform with spatial 8R reconfigurable trunk On the behaviour of n-planets planetary gear sets influenced by geometrical design factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1