PVT2DNet: Polyp segmentation with vision transformer and dual decoder refinement strategy

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-10-01 DOI:10.1016/j.jvcir.2024.104304
Yibiao Hu, Yan Jin, Zhiwei Jiang, Qiufu Zheng
{"title":"PVT2DNet: Polyp segmentation with vision transformer and dual decoder refinement strategy","authors":"Yibiao Hu,&nbsp;Yan Jin,&nbsp;Zhiwei Jiang,&nbsp;Qiufu Zheng","doi":"10.1016/j.jvcir.2024.104304","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal carcinoma is a prevalent malignancy worldwide. Accurate polyp segmentation, along with endoscopic resection, can significantly reduce its incidence and mortality. Most polyp segmentation neural networks are CNN-based and single decoder strategy architectures, which learn limited robust representations. In this paper, we propose a novel network with the vision transformer and dual decoder refinement strategy called PVT2DNet to overcome some limitations of current networks and achieve more precise automated polyp segmentation. The PVT2DNet adopts a pyramid vision transformer encoder and enhances the multi-level features with the context-enhanced module (CEM). Moreover, instead of directly feeding features into a single decoder, we introduce a dual partial cascaded decoder refinement strategy to excavate more informative polyp cues. Extensive experimentations on five widely adopted datasets demonstrate the proposed network outperforms other state-of-the-art on most metrics.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104304"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002608","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal carcinoma is a prevalent malignancy worldwide. Accurate polyp segmentation, along with endoscopic resection, can significantly reduce its incidence and mortality. Most polyp segmentation neural networks are CNN-based and single decoder strategy architectures, which learn limited robust representations. In this paper, we propose a novel network with the vision transformer and dual decoder refinement strategy called PVT2DNet to overcome some limitations of current networks and achieve more precise automated polyp segmentation. The PVT2DNet adopts a pyramid vision transformer encoder and enhances the multi-level features with the context-enhanced module (CEM). Moreover, instead of directly feeding features into a single decoder, we introduce a dual partial cascaded decoder refinement strategy to excavate more informative polyp cues. Extensive experimentations on five widely adopted datasets demonstrate the proposed network outperforms other state-of-the-art on most metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PVT2DNet:利用视觉变换器和双解码器细化策略进行息肉分割
结肠直肠癌是一种全球流行的恶性肿瘤。准确的息肉分割和内窥镜切除术可以大大降低其发病率和死亡率。大多数息肉分割神经网络都是基于 CNN 的单一解码器策略架构,其学习的鲁棒性表征有限。在本文中,我们提出了一种采用视觉变换器和双解码器细化策略的新型网络,称为 PVT2DNet,以克服现有网络的一些局限性,实现更精确的息肉自动分割。PVT2DNet 采用金字塔视觉变换器编码器,并利用上下文增强模块(CEM)增强多级特征。此外,我们不再将特征直接输入单个解码器,而是引入了双部分级联解码器细化策略,以挖掘更多的息肉信息线索。在五个广泛采用的数据集上进行的广泛实验表明,所提出的网络在大多数指标上都优于其他最先进的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Stochastic textures modeling and its application in texture structure decomposition RQVR: A multi-exposure image fusion network that optimizes rendering quality and visual realism Semantic-guided face inpainting with subspace pyramid aggregation Enhancing visibility in hazy conditions: A multimodal multispectral image dehazing approach A two-step enhanced tensor denoising framework based on noise position prior and adaptive ring rank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1