Fengyuan Zhao , Zhouran Zhang , Yicong Ye, Yahao Li, Shun Li, Yu Tang, Li’an Zhu, Shuxin Bai
{"title":"Machine learning guided prediction of dynamic energy release in high-entropy alloys","authors":"Fengyuan Zhao , Zhouran Zhang , Yicong Ye, Yahao Li, Shun Li, Yu Tang, Li’an Zhu, Shuxin Bai","doi":"10.1016/j.matdes.2024.113339","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloy (HEA) type energetic structural materials (ESMs) offer exceptional strength, adequate ductility and reactivity upon dynamic loading, thus demonstrating great potentials in pyrotechnic applications. However, the main factors governing their energetic performance remain elusive, primarily attributable to the intricate mechanical-thermal-chemical coupling effects and the inherent challenges of HEA design. To address this, we propose a small-data machine learning framework designed to predict the energetic performance of HEA-type ESMs, employing support vector regression, leave-one-out cross-validation, and principal component analysis (PCA) to effectively manage a small, unevenly distributed, and highly dimensional dataset. Notably, the framework achieved a coefficient of determination (R<sup>2</sup>) of 0.854 while upholding robust performance, interpretability and computational efficiency. Fracture elongation (<em>ε</em><sub>t</sub>) and compressive yield strength (<em>σ</em><sub>cys</sub>) were identified as critical features, with <em>σ</em><sub>cys</sub> positively influencing performance while both <em>ε</em><sub>t</sub> and unit theoretical heat of combustion (UTHC) demonstrated negative effect. Guided by the framework, a series of novel Ti-V-Ta-Zr alloys with the comparable UTHC, velocity (<em>v</em>) and weight (<em>m</em>) but tailored <em>ε</em><sub>t</sub> and <em>σ</em><sub>cys</sub> were designed and tested. Ti<sub>30</sub>V<sub>30</sub>Ta<sub>30</sub>Zr<sub>10</sub> alloy exhibited a commendable balance of mechanical properties and the smallest mean particle size, aligning with the model predictions and suggesting more thorough energy release during ballistic experiments.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"246 ","pages":"Article 113339"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007147","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloy (HEA) type energetic structural materials (ESMs) offer exceptional strength, adequate ductility and reactivity upon dynamic loading, thus demonstrating great potentials in pyrotechnic applications. However, the main factors governing their energetic performance remain elusive, primarily attributable to the intricate mechanical-thermal-chemical coupling effects and the inherent challenges of HEA design. To address this, we propose a small-data machine learning framework designed to predict the energetic performance of HEA-type ESMs, employing support vector regression, leave-one-out cross-validation, and principal component analysis (PCA) to effectively manage a small, unevenly distributed, and highly dimensional dataset. Notably, the framework achieved a coefficient of determination (R2) of 0.854 while upholding robust performance, interpretability and computational efficiency. Fracture elongation (εt) and compressive yield strength (σcys) were identified as critical features, with σcys positively influencing performance while both εt and unit theoretical heat of combustion (UTHC) demonstrated negative effect. Guided by the framework, a series of novel Ti-V-Ta-Zr alloys with the comparable UTHC, velocity (v) and weight (m) but tailored εt and σcys were designed and tested. Ti30V30Ta30Zr10 alloy exhibited a commendable balance of mechanical properties and the smallest mean particle size, aligning with the model predictions and suggesting more thorough energy release during ballistic experiments.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.