Mu Liu , Wei Yuan , Chaogang Fang , Xun Wang , Ning Tan , Mingyu Zhao , Xiangli Wang , Thomas J. Algeo , Peng Sun , Xinbin Feng , Daizhao Chen
{"title":"Mercury isotope evidence for Middle Ordovician photic-zone euxinia: Implications for termination of the Great Ordovician biodiversification event","authors":"Mu Liu , Wei Yuan , Chaogang Fang , Xun Wang , Ning Tan , Mingyu Zhao , Xiangli Wang , Thomas J. Algeo , Peng Sun , Xinbin Feng , Daizhao Chen","doi":"10.1016/j.gr.2024.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>The Darriwilian (Middle Ordovician) is marked by a striking peak of the Great Ordovician Biodiversification Event (GOBE) followed by an abrupt ∼50 % decline in invertebrate species. Understanding the ultimate driving mechanism behind this biotic turnover and its correlation with those proximate climatic-oceanic changes that directly result in elevated biotic mortality have garnered considerable attention. One hypothesis posits that oceanic redox evolution actively influenced biodiversification, and progressive expansion of marine anoxia caused the termination of this biotic event. In this study, we present sedimentological and geochemical profiles for three outcrops of different lithofacies across the Middle-Upper Ordovician transition, ranging from carbonate platform to deep-water slope-basinal facies of the Tarim and South China cratons. Mercury isotopes reveal that recurrent and spatially dynamic photic-zone euxinia (PZE) occurred in the slope-basinal facies while being absent in platform facies. Mass balance model results suggest that ∼23 % of local atmospheric Hg was sequestered in marine sediments due to elevated dissolved H<sub>2</sub>S in surface waters. This finding suggests that destabilized oceanic redox conditions developed during climatic cooling, particularly shoaling and upwelling of deep-marine euxinic waters into the photic zone, coupled with global carbon-cycle disturbances, resulted in biodiversity decline following the peak of the GOBE.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"137 ","pages":"Pages 131-144"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24002752","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Darriwilian (Middle Ordovician) is marked by a striking peak of the Great Ordovician Biodiversification Event (GOBE) followed by an abrupt ∼50 % decline in invertebrate species. Understanding the ultimate driving mechanism behind this biotic turnover and its correlation with those proximate climatic-oceanic changes that directly result in elevated biotic mortality have garnered considerable attention. One hypothesis posits that oceanic redox evolution actively influenced biodiversification, and progressive expansion of marine anoxia caused the termination of this biotic event. In this study, we present sedimentological and geochemical profiles for three outcrops of different lithofacies across the Middle-Upper Ordovician transition, ranging from carbonate platform to deep-water slope-basinal facies of the Tarim and South China cratons. Mercury isotopes reveal that recurrent and spatially dynamic photic-zone euxinia (PZE) occurred in the slope-basinal facies while being absent in platform facies. Mass balance model results suggest that ∼23 % of local atmospheric Hg was sequestered in marine sediments due to elevated dissolved H2S in surface waters. This finding suggests that destabilized oceanic redox conditions developed during climatic cooling, particularly shoaling and upwelling of deep-marine euxinic waters into the photic zone, coupled with global carbon-cycle disturbances, resulted in biodiversity decline following the peak of the GOBE.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.