Sarfraz Ahmad , Muhammad Imran , Fayyaz Hussain , Niaz Ahmad Niaz , Ammar Mohamed Tighezza , R.M.A. Khalil , M. Irfan , Muhammad Fahad Ehsan
{"title":"Unraveling quantum capacitance of black phosphorene by the doping of non-metals for energy storage applications using DFT method","authors":"Sarfraz Ahmad , Muhammad Imran , Fayyaz Hussain , Niaz Ahmad Niaz , Ammar Mohamed Tighezza , R.M.A. Khalil , M. Irfan , Muhammad Fahad Ehsan","doi":"10.1016/j.surfin.2024.105187","DOIUrl":null,"url":null,"abstract":"<div><div>Supercapacitor plays a pivotal role as energy storage devices in the context of eliminating energy resources. Black Phosphorene (BP) is highly regarded as a potential electrode for supercapacitor (SC) because of its outstanding properties, including excellent carrier mobility and unique electronic properties. In this research work, the monolayer of BP and bilayer of BP (BP/BP) structure is investigated by using DFT. Moreover, the effect of doping and co-doping of non-metal (oxygen, nitrogen) in the mono- and bi-layer was also investigated to increase their performance by modulating the charge storage, and electronic properties of BP. The structural properties, density of states, quantum capacitance, surface charge density, bader charge analysis, isosurface charge density difference, integrated charge density of monolayer and bilayer are studied. The density functional theory (DFT) is used to calculate all above mention properties. DFT-D3 method with Becke-Johnson damping function is used as dispersion correction factor for all the calculations of bilayer. The calculated results find that bilayer structure gives better results as compared to monolayer structure. In this work, results also revealed that doping of oxygen and nitrogen atom significantly enhance the C<sub>Q</sub> and Q of mono- and bi-layer structure. For aqueous system, all the composites exhibited asymmetrical behavior except BP/BP bilayer. BP-N/BP-N (1369.8µC/cm<sup>2</sup>), and BP-O/BP-O (-1298.1µC/cm<sup>2</sup>) bilayer structure are best for anode and cathode material. In case of ionic/organic system, all composites showed asymmetrical behavior. BP-O/BP-O (-6053.5µC/cm<sup>2</sup>), and BP-N/BP-N (9329.8µC/cm<sup>2</sup>) bilayer structure is best cathode and anode material.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitor plays a pivotal role as energy storage devices in the context of eliminating energy resources. Black Phosphorene (BP) is highly regarded as a potential electrode for supercapacitor (SC) because of its outstanding properties, including excellent carrier mobility and unique electronic properties. In this research work, the monolayer of BP and bilayer of BP (BP/BP) structure is investigated by using DFT. Moreover, the effect of doping and co-doping of non-metal (oxygen, nitrogen) in the mono- and bi-layer was also investigated to increase their performance by modulating the charge storage, and electronic properties of BP. The structural properties, density of states, quantum capacitance, surface charge density, bader charge analysis, isosurface charge density difference, integrated charge density of monolayer and bilayer are studied. The density functional theory (DFT) is used to calculate all above mention properties. DFT-D3 method with Becke-Johnson damping function is used as dispersion correction factor for all the calculations of bilayer. The calculated results find that bilayer structure gives better results as compared to monolayer structure. In this work, results also revealed that doping of oxygen and nitrogen atom significantly enhance the CQ and Q of mono- and bi-layer structure. For aqueous system, all the composites exhibited asymmetrical behavior except BP/BP bilayer. BP-N/BP-N (1369.8µC/cm2), and BP-O/BP-O (-1298.1µC/cm2) bilayer structure are best for anode and cathode material. In case of ionic/organic system, all composites showed asymmetrical behavior. BP-O/BP-O (-6053.5µC/cm2), and BP-N/BP-N (9329.8µC/cm2) bilayer structure is best cathode and anode material.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.