DEM study of structuralized cemented slopes under excavation conditions

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-10-02 DOI:10.1016/j.powtec.2024.120341
Sujia Liu, Ga Zhang
{"title":"DEM study of structuralized cemented slopes under excavation conditions","authors":"Sujia Liu,&nbsp;Ga Zhang","doi":"10.1016/j.powtec.2024.120341","DOIUrl":null,"url":null,"abstract":"<div><div>Structuralized cementation has emerged as a promising method for reinforcing excavated slopes. The Discrete Element analysis is conducted on the structuralized cemented slopes under excavation with its validity verified through centrifuge model tests. The results indicate that structuralized cemented slopes exhibit progressive failure from the bottom to the top under excavation conditions. As the slope elevation decreases, the failure mode transitions from tension failure to shear failure, due to the presence of tensile stress only in the upper part of the slope. Microscopically, structuralized cementation prevents contact breakage, reducing fabric anisotropy and the variation of contact orientation from the vertical direction. Macroscopically, it increases the safety limit of slopes. The significant coupling between fabric evolution localization and local failure explains the failure mechanism of structuralized cemented slopes under excavation conditions. Increasing the size of the solidification zone reduces the localization extent of fabric evolution, thereby reinforcing the slope.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"448 ","pages":"Article 120341"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009859","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Structuralized cementation has emerged as a promising method for reinforcing excavated slopes. The Discrete Element analysis is conducted on the structuralized cemented slopes under excavation with its validity verified through centrifuge model tests. The results indicate that structuralized cemented slopes exhibit progressive failure from the bottom to the top under excavation conditions. As the slope elevation decreases, the failure mode transitions from tension failure to shear failure, due to the presence of tensile stress only in the upper part of the slope. Microscopically, structuralized cementation prevents contact breakage, reducing fabric anisotropy and the variation of contact orientation from the vertical direction. Macroscopically, it increases the safety limit of slopes. The significant coupling between fabric evolution localization and local failure explains the failure mechanism of structuralized cemented slopes under excavation conditions. Increasing the size of the solidification zone reduces the localization extent of fabric evolution, thereby reinforcing the slope.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘条件下结构化水泥斜坡的 DEM 研究
结构化固结法是一种很有前途的开挖边坡加固方法。对开挖条件下的结构化固结边坡进行了离散元素分析,并通过离心机模型试验验证了其有效性。结果表明,在开挖条件下,结构化固结边坡呈现出从底部到顶部的渐进式破坏。随着斜坡标高的降低,破坏模式从拉伸破坏过渡到剪切破坏,这是由于斜坡上部只存在拉应力。从微观上看,结构化胶结可防止接触断裂,减少织物的各向异性和接触方向与垂直方向的差异。宏观上,它提高了斜坡的安全极限。结构演变局部化与局部破坏之间的显著耦合解释了开挖条件下结构化固结斜坡的破坏机制。增大固结区的面积可减小织物演变的局部范围,从而加固边坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Methane dry reforming in a microwave heating-assisted dense fluidized bed Effect of mechanical milling time on powder characteristic, microstructure, and mechanical properties of AA2024/B4C/GNPs hybrid nanocomposites Mass discharge rate of granular flow in eccentric silos with variable side wall friction Characterisation of a continuous blender: Impact of physical properties on mass holdup behaviour Simulating breakage by compression of iron ore pellets using the discrete breakage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1