Tiange Chen , Pan Cheng , Mingyue Li , Yuxi Wang , Peiling Tang , Yinuo Zhang , Qihao Guo , Qin Cheng , Tao Mei , Ke Liu , Dong Wang
{"title":"A readily accessible quaternized cellulose filter paper with high permeability for IgG separation","authors":"Tiange Chen , Pan Cheng , Mingyue Li , Yuxi Wang , Peiling Tang , Yinuo Zhang , Qihao Guo , Qin Cheng , Tao Mei , Ke Liu , Dong Wang","doi":"10.1016/j.coco.2024.102112","DOIUrl":null,"url":null,"abstract":"<div><div>Anion-exchange chromatography (AEC) is recognized as a highly effective approach for the purification of immunoglobulin G (IgG). This study introduces an innovative strategy that employs waste cellulose filter paper in the production of AEC media. A quaternized cellulose fiber membrane (CFM-QCS) was successfully fabricated that cellulose fibers were as a structural framework, glutaraldehyde (GA) as a crosslinking agent, and quaternary chitosan (QCS) as a modifying agent. Morphological and chemical characterization revealed that GA and QCS were uniformly crosslinked on the surface of the cellulose fibers, resulting in excellent mechanical properties in both dry and wet states. Benefiting from its 3D network scaffold structure, CFM-QCS demonstrated a high adsorption capacity for bovine serum albumin (BSA), with static and dynamic adsorption capacities of 605.15 mg/g and 88.63 mg/ml, respectively. After treated with extreme conditions and 10 cyclic adsorption and elution, the adsorption capacity of CFM-QCS remains almost unchanged, highlighting its excellent stability. Additionally, a CFM-QCS packed chromatography column exhibited high flux of 10.38 L/h at 0.1 MPa, which can efficiently separate IgG from a mixed solution in the presence of BSA and IgG by gravity-driven. This work presents a straightforward approach for preparing high-performance ion-exchange chromatography membranes for IgG separation.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102112"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003036","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Anion-exchange chromatography (AEC) is recognized as a highly effective approach for the purification of immunoglobulin G (IgG). This study introduces an innovative strategy that employs waste cellulose filter paper in the production of AEC media. A quaternized cellulose fiber membrane (CFM-QCS) was successfully fabricated that cellulose fibers were as a structural framework, glutaraldehyde (GA) as a crosslinking agent, and quaternary chitosan (QCS) as a modifying agent. Morphological and chemical characterization revealed that GA and QCS were uniformly crosslinked on the surface of the cellulose fibers, resulting in excellent mechanical properties in both dry and wet states. Benefiting from its 3D network scaffold structure, CFM-QCS demonstrated a high adsorption capacity for bovine serum albumin (BSA), with static and dynamic adsorption capacities of 605.15 mg/g and 88.63 mg/ml, respectively. After treated with extreme conditions and 10 cyclic adsorption and elution, the adsorption capacity of CFM-QCS remains almost unchanged, highlighting its excellent stability. Additionally, a CFM-QCS packed chromatography column exhibited high flux of 10.38 L/h at 0.1 MPa, which can efficiently separate IgG from a mixed solution in the presence of BSA and IgG by gravity-driven. This work presents a straightforward approach for preparing high-performance ion-exchange chromatography membranes for IgG separation.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.