Integration of the passive energy balancing based actuation system into a camber morphing design

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-09-30 DOI:10.1016/j.ast.2024.109641
C. Wang , Y. Zhao , K. Huang , J. Zhang , A.D. Shaw , H. Gu , M. Amoozgar , M.I. Friswell , B.K.S. Woods
{"title":"Integration of the passive energy balancing based actuation system into a camber morphing design","authors":"C. Wang ,&nbsp;Y. Zhao ,&nbsp;K. Huang ,&nbsp;J. Zhang ,&nbsp;A.D. Shaw ,&nbsp;H. Gu ,&nbsp;M. Amoozgar ,&nbsp;M.I. Friswell ,&nbsp;B.K.S. Woods","doi":"10.1016/j.ast.2024.109641","DOIUrl":null,"url":null,"abstract":"<div><div>A spiral pulley mechanism can be used to passively balance the energy between the morphing structure and actuation system. Applying the energy balancing concept has the potential to improve the performance of the actuation system by reducing the external energy consumption. In the current study, the integration workflow for the passive energy balancing device is established and is adopted in a variable camber morphing wing. The design variables of the passive energy balancing system are optimised and the effects of the different parameters are discussed together with the adaptability of the passive energy balancing device when the load stiffness changes. An integrated demonstrator was also built to validate the mechanism by measuring the currents in the process of morphing actuation.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109641"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007703","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A spiral pulley mechanism can be used to passively balance the energy between the morphing structure and actuation system. Applying the energy balancing concept has the potential to improve the performance of the actuation system by reducing the external energy consumption. In the current study, the integration workflow for the passive energy balancing device is established and is adopted in a variable camber morphing wing. The design variables of the passive energy balancing system are optimised and the effects of the different parameters are discussed together with the adaptability of the passive energy balancing device when the load stiffness changes. An integrated demonstrator was also built to validate the mechanism by measuring the currents in the process of morphing actuation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将基于被动能量平衡的传动系统集成到凸轮变形设计中
螺旋滑轮机制可用于被动平衡变形结构和执行系统之间的能量。应用能量平衡概念有可能通过减少外部能量消耗来提高执行系统的性能。本研究建立了被动能量平衡装置的集成工作流程,并将其应用于可变外倾变形翼。对被动能量平衡系统的设计变量进行了优化,并讨论了不同参数的影响以及被动能量平衡装置在负载刚度变化时的适应性。此外,还制作了一个综合演示器,通过测量变形驱动过程中的电流来验证该机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
A preliminary investigation on a novel vortex-controlled flameholder for aircraft engine combustor Genetic programming method for satellite optimization design with quantification of multi-granularity model uncertainty Prediction of aerodynamic coefficients for multi-swept delta wings via a hybrid neural network Robust optimization design of a blended wing-body drone considering influence of propulsion system Autonomous numerical predictor-corrector guidance for human Mars landing missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1