Integrating environmental remediation with biodiesel production from toxic non-edible oil seeds (Croton bonplandianus) using a sustainable phyto-nano catalyst
Ulfat Zia , Mushtaq Ahmad , Abdulaziz Abdullah Alsahli , Ikram Faiz , Shazia Sultana , Angie V. Caicedo-Paz , Cassamo U. Mussagy , Ahmad Mustafa
{"title":"Integrating environmental remediation with biodiesel production from toxic non-edible oil seeds (Croton bonplandianus) using a sustainable phyto-nano catalyst","authors":"Ulfat Zia , Mushtaq Ahmad , Abdulaziz Abdullah Alsahli , Ikram Faiz , Shazia Sultana , Angie V. Caicedo-Paz , Cassamo U. Mussagy , Ahmad Mustafa","doi":"10.1016/j.biombioe.2024.107406","DOIUrl":null,"url":null,"abstract":"<div><div>In the current situation of the environmental uprising toxicology, rising global temperature, and energy-depleting urges to explore and discover more renewable and greener ecological-benefiting energy resources. Biobased renewable fuels generated by using waste products can help in waste management, climate change mitigation, and a low-carbon future. The main objective of this research is to produce environment-friendly and cost-effective biofuel. The potentiality of the novel, toxic, waste, and inedible feedstock <em>Croton bonplandianus</em> was evaluated for biodiesel synthesis through transesterification utilizing a Phyto-nano catalyst of potassium oxide prepared by <em>Croton bonplandianus</em> floral stalk's aqueous extract focusing on waste management. Phyto-nano catalyst characterization was done through innovative tools such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential (ZP), X-Ray Diffraction (XRD), Fourier Transformed Infrared spectroscopy (FTIR), and Diffuse Reflectance Spectroscopy (DRS). The characterization results revealed that the potassium oxide phyto-nanocatalyst possesses an average nanoparticle size of 44.5 nm. This size is optimal for enhanced catalytic activity, indicating significant potential for efficient catalysis. The highest yield (94 %) of biodiesel was secured at optimized reaction conditions of catalyst quantity (0.50 wt%), reaction time (180 min), methanol: oil ratio (9:1), and reaction thermal point (70 °C). Transformation of triglycerides to methyl esters was confirmed by GC/MS, NMR, and FTIR techniques. A total of 21 methyl esters were observed in <em>Croton bonplandianus</em> biodiesel confirmed via GC/MS results. Evaluation of fuel properties was done and matched with international fuel standards. The conclusive remarks for the conducted research are that <em>Croton bonplandianus</em> has a high potential for biodiesel production by applying Phyto-nanocatalysts of potassium oxide while dealing with hazardous environmental conditions and waste management. Phyto nanocatalyst of potassium oxide can be reused and gives the same yield after several cycles of reusability, this reusability of heterogenous Phyto nanocatalyst can reduce to total cost of biodiesel production and can contribute towards circular economy.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107406"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003593","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the current situation of the environmental uprising toxicology, rising global temperature, and energy-depleting urges to explore and discover more renewable and greener ecological-benefiting energy resources. Biobased renewable fuels generated by using waste products can help in waste management, climate change mitigation, and a low-carbon future. The main objective of this research is to produce environment-friendly and cost-effective biofuel. The potentiality of the novel, toxic, waste, and inedible feedstock Croton bonplandianus was evaluated for biodiesel synthesis through transesterification utilizing a Phyto-nano catalyst of potassium oxide prepared by Croton bonplandianus floral stalk's aqueous extract focusing on waste management. Phyto-nano catalyst characterization was done through innovative tools such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential (ZP), X-Ray Diffraction (XRD), Fourier Transformed Infrared spectroscopy (FTIR), and Diffuse Reflectance Spectroscopy (DRS). The characterization results revealed that the potassium oxide phyto-nanocatalyst possesses an average nanoparticle size of 44.5 nm. This size is optimal for enhanced catalytic activity, indicating significant potential for efficient catalysis. The highest yield (94 %) of biodiesel was secured at optimized reaction conditions of catalyst quantity (0.50 wt%), reaction time (180 min), methanol: oil ratio (9:1), and reaction thermal point (70 °C). Transformation of triglycerides to methyl esters was confirmed by GC/MS, NMR, and FTIR techniques. A total of 21 methyl esters were observed in Croton bonplandianus biodiesel confirmed via GC/MS results. Evaluation of fuel properties was done and matched with international fuel standards. The conclusive remarks for the conducted research are that Croton bonplandianus has a high potential for biodiesel production by applying Phyto-nanocatalysts of potassium oxide while dealing with hazardous environmental conditions and waste management. Phyto nanocatalyst of potassium oxide can be reused and gives the same yield after several cycles of reusability, this reusability of heterogenous Phyto nanocatalyst can reduce to total cost of biodiesel production and can contribute towards circular economy.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.