Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Journal of Organometallic Chemistry Pub Date : 2024-09-24 DOI:10.1016/j.jorganchem.2024.123404
Miguel Escobar , Maryam Ghareeb , Mustafa Mudhafar , Marwah.J. Hezam , Nouby M. Ghazaly , Shaima Haithem Zaki , Hussam Abdali Abdulridui , Ayodele Lasisi , Saiful Islam
{"title":"Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors","authors":"Miguel Escobar ,&nbsp;Maryam Ghareeb ,&nbsp;Mustafa Mudhafar ,&nbsp;Marwah.J. Hezam ,&nbsp;Nouby M. Ghazaly ,&nbsp;Shaima Haithem Zaki ,&nbsp;Hussam Abdali Abdulridui ,&nbsp;Ayodele Lasisi ,&nbsp;Saiful Islam","doi":"10.1016/j.jorganchem.2024.123404","DOIUrl":null,"url":null,"abstract":"<div><div>Using Density functional theory (DFT), we investigated the charge storage capacity, quantum capacitance (C<sub>Q</sub>), geometry and electronic structures of BNyne/graphene heterostructures (BNyneGHs), as well as the impact of transition-metal dopants on their C<sub>Q</sub>. Our results showed that doping was more effective than vacancy defects in improving the C<sub>Q</sub> of BNyneGHs. Ti-doped BNyneGHs exhibited the highest C<sub>Q</sub> value of 360.08 μF/cm<sup>2</sup>, making them ideal positive electrode materials for supercapacitors (SCs). The presence of doping agents was found to enhance the density of states (DOS) around the Fermi level, resulting in improved C<sub>Q</sub>. Our calculations identified potential cathode or anode materials for high-energy-density SCs, providing theoretical support for the design of high-capacitance SCs.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1022 ","pages":"Article 123404"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24003991","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Using Density functional theory (DFT), we investigated the charge storage capacity, quantum capacitance (CQ), geometry and electronic structures of BNyne/graphene heterostructures (BNyneGHs), as well as the impact of transition-metal dopants on their CQ. Our results showed that doping was more effective than vacancy defects in improving the CQ of BNyneGHs. Ti-doped BNyneGHs exhibited the highest CQ value of 360.08 μF/cm2, making them ideal positive electrode materials for supercapacitors (SCs). The presence of doping agents was found to enhance the density of states (DOS) around the Fermi level, resulting in improved CQ. Our calculations identified potential cathode or anode materials for high-energy-density SCs, providing theoretical support for the design of high-capacitance SCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过过渡金属掺杂剂提高 BNyne/石墨烯异质结构的量子电容,实现高性能超级电容器
我们利用密度泛函理论(DFT)研究了硼炔/石墨烯异质结构(BNyne/GHs)的电荷存储容量、量子电容(CQ)、几何形状和电子结构,以及过渡金属掺杂物对其 CQ 的影响。我们的研究结果表明,在改善 BNyneGHs 的 CQ 方面,掺杂比空位缺陷更有效。掺杂钛的 BNyneGHs 的 CQ 值最高,达到 360.08 μF/cm2,是超级电容器 (SC) 理想的正极材料。研究发现,掺杂剂的存在提高了费米级附近的状态密度(DOS),从而改善了 CQ。我们的计算为高能量密度超级电容器确定了潜在的阴极或阳极材料,为高电容超级电容器的设计提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
期刊最新文献
Recent progress in synthesis, reactivity, and biological activities of selenopheno[2,3-c/3,2-c] pyrazole heterocycles DFT study on the mechanism and structural aspects of iron(II)-catalyzed condensation of epichlorohydrin and CO2 2,3-diferrocenyl-(1-triphenylphosphoranylidene)ketene: Synthesis and interactions with O, C, N, S, Se nucleophiles, characterization and X-ray diffraction Recyclable and reusable Pd(acac)2/BrettPhos/PEG-1000 system for the Suzuki-Miyaura coupling of nitroarenes Recent advances in homogeneous catalysts for the acceptorless dehydrogenation of alcohols to ketones and aldehydes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1