Variational Autoencoder with Gaussian Random Field prior: Application to unsupervised animal detection in aerial images

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL ISPRS Journal of Photogrammetry and Remote Sensing Pub Date : 2024-10-03 DOI:10.1016/j.isprsjprs.2024.09.028
Hugo Gangloff , Minh-Tan Pham , Luc Courtrai , Sébastien Lefèvre
{"title":"Variational Autoencoder with Gaussian Random Field prior: Application to unsupervised animal detection in aerial images","authors":"Hugo Gangloff ,&nbsp;Minh-Tan Pham ,&nbsp;Luc Courtrai ,&nbsp;Sébastien Lefèvre","doi":"10.1016/j.isprsjprs.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 600-609"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003666","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有高斯随机场先验的变异自动编码器:应用于航空图像中的无监督动物检测
在现实世界的航空图像数据集中,所关注的对象往往是缺失的、难以注释的,而且涉及不同的方面。在这种情况下,无监督异常检测(AD)框架就显得非常重要,而变异自动编码器(VAE)是一种流行的概率模型,经常被使用。为了利用自然航空图像中出现的特殊纹理,我们开发了用于 AD 的变异自动编码器文献。更确切地说,我们提出了一种具有高斯随机场(GRF)先验的新 VAE 模型(VAE-GRF),它是对经典 VAE 模型的概括,我们还提供了使该模型具有可操作性所需的必要程序和假设。我们的研究表明,在某些假设条件下,VAE-GRF 在很大程度上优于传统的 VAE 和其他一些针对 AD 开发的概率模型。我们的研究结果表明,VAE-GRF 可以作为相关的 VAE 基线,取代传统的 VAE,而且额外的计算成本非常有限。我们在 MVTec 视觉检测参考数据集和另外两个专门用于航空图像中无监督动物检测任务的数据集上提供了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
期刊最新文献
Optimizing hybrid models for canopy nitrogen mapping from Sentinel-2 in Google Earth Engine A unique dielectric constant estimation for lunar surface through PolSAR model-based decomposition Unwrap-Net: A deep neural network-based InSAR phase unwrapping method assisted by airborne LiDAR data METNet: A mesh exploring approach for segmenting 3D textured urban scenes On-orbit geometric calibration of MERSI whiskbroom scanner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1