{"title":"Variational Autoencoder with Gaussian Random Field prior: Application to unsupervised animal detection in aerial images","authors":"Hugo Gangloff , Minh-Tan Pham , Luc Courtrai , Sébastien Lefèvre","doi":"10.1016/j.isprsjprs.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 600-609"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003666","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.