Predictive model for shear wave velocity of gravelly soil and its application to liquefaction triggering assessment

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL Engineering Geology Pub Date : 2024-10-04 DOI:10.1016/j.enggeo.2024.107751
Chi-Chin Tsai , Jing-Wen Su , Scott M. Olson
{"title":"Predictive model for shear wave velocity of gravelly soil and its application to liquefaction triggering assessment","authors":"Chi-Chin Tsai ,&nbsp;Jing-Wen Su ,&nbsp;Scott M. Olson","doi":"10.1016/j.enggeo.2024.107751","DOIUrl":null,"url":null,"abstract":"<div><div>Several studies have established empirical correlations between shear wave velocity (<em>V</em><sub><em>s</em></sub>) and standard penetration test blow count (SPT-N) for engineering use. However, these empirical correlations cannot be applied to gravel-rich soils since the measured SPT-N is often inflated in gravel. Therefore, an empirical correlation of <em>V</em><sub><em>s</em></sub> for gravel is developed in this study using the Engineering Geological Database for the Taiwan Strong Motion Instrumentation Program. The <em>V</em><sub><em>s</em></sub> predictive model considers gravel content (GC) and coefficient of uniformity (Cu) in addition to effective vertical stress, void ratio, fines content, plasticity index, and overconsolidation ratio, which have been considered previously. The proposed model indicates that <em>V</em><sub><em>s</em></sub> increases with GC and Cu. Moreover, the <em>V</em><sub><em>s</em></sub> adjusted for GC can be used with existing <em>V</em><sub><em>s</em></sub> -based liquefaction triggering relationships to rationally define the boundary between liquefaction and non-liquefaction case histories with different GCs.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"342 ","pages":"Article 107751"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001379522400351X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Several studies have established empirical correlations between shear wave velocity (Vs) and standard penetration test blow count (SPT-N) for engineering use. However, these empirical correlations cannot be applied to gravel-rich soils since the measured SPT-N is often inflated in gravel. Therefore, an empirical correlation of Vs for gravel is developed in this study using the Engineering Geological Database for the Taiwan Strong Motion Instrumentation Program. The Vs predictive model considers gravel content (GC) and coefficient of uniformity (Cu) in addition to effective vertical stress, void ratio, fines content, plasticity index, and overconsolidation ratio, which have been considered previously. The proposed model indicates that Vs increases with GC and Cu. Moreover, the Vs adjusted for GC can be used with existing Vs -based liquefaction triggering relationships to rationally define the boundary between liquefaction and non-liquefaction case histories with different GCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
砾质土剪切波速度预测模型及其在液化触发评估中的应用
一些研究已经建立了剪切波速度(Vs)与标准贯入试验打击计数(SPT-N)之间的经验相关性,供工程使用。然而,这些经验相关性并不适用于富含砾石的土壤,因为在砾石中测得的 SPT-N 通常会膨胀。因此,本研究利用台湾强震仪器计划的工程地质数据库,建立了砾石的 Vs 经验相关性。Vs 预测模型除了考虑有效垂直应力、空隙率、细粒含量、塑性指数和过固结率之外,还考虑了砾石含量 (GC) 和均匀系数 (Cu)。建议的模型表明,Vs 随 GC 和 Cu 的增加而增加。此外,根据 GC 调整的 Vs 可与现有的基于 Vs 的液化触发关系一起使用,以合理界定不同 GC 的液化和非液化案例历史之间的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
期刊最新文献
In-situ and experimental investigations of the failure characteristics of surrounding rock through granites with biotite interlayers in a tunnel Evolution characteristics of mining-induced fractures in overburden strata under close-multi coal seams mining based on optical fiber monitoring Evaluating the chain of uncertainties in the 3D geological modelling workflow Thermal and mechanical impact of artificial ground-freezing on deep excavation stability in Nakdong River Deltaic deposits Large-scale geohazards risk of submarine landslides considering the subsea cables vulnerability: A case study from the northern continental slopes of South China Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1