Uncovering the fracture mechanism of Laves (1 1 1)/ Ni6Nb7 (0 0 0 1) interfaces by first-principles calculations

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-09-26 DOI:10.1016/j.actamat.2024.120426
Ge Zhang , Guoqing Chen , Chinnapat Panwisawas , Xinyan Teng , Rong An , Jian Cao , Yongxian Huang , Zhibo Dong , Xuesong Leng
{"title":"Uncovering the fracture mechanism of Laves (1 1 1)/ Ni6Nb7 (0 0 0 1) interfaces by first-principles calculations","authors":"Ge Zhang ,&nbsp;Guoqing Chen ,&nbsp;Chinnapat Panwisawas ,&nbsp;Xinyan Teng ,&nbsp;Rong An ,&nbsp;Jian Cao ,&nbsp;Yongxian Huang ,&nbsp;Zhibo Dong ,&nbsp;Xuesong Leng","doi":"10.1016/j.actamat.2024.120426","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering materials interface is key in determining the comprehensive service performance of different structures owing to its complex structure and interfacial chemical characteristics. In this work, we investigate the energetic properties and fracture mechanism of Laves (1 1 1)/ Ni<sub>6</sub>Nb<sub>7</sub> (0 0 0 1) interfaces in electron beam welded Nb/GH3128 dissimilar joint interface using first principles calculations combined with high-resolution transmission electron microscope (HRTEM) experiments. 48 interface models are constructed considering both surface terminations and atomic configurations of interfaces. It is found that interface atomic structure change occurs in many interfaces. i.e. interface rearrangement. Compared to interfacial atomic configuration, surface termination has a greater impact on interface stability. The computational work of adhesion and interfacial energy indicate that all interfaces can stably exist and interface rearrangement is beneficial for improving the bonding strength of interfaces. Ni-Nb bonds at Laves (1 1 1)/ Ni<sub>6</sub>Nb<sub>7</sub> (0 0 0 1) interfaces are proven to play the dominant role in weakening the interfacial cohesion. The effect of chemical bonds on the cohesion of interfaces is further quantified by integrating crystal orbital Hamilton populations (ICOHP). It turns out that in-plane chemical bonds are detrimental to interfacial bonding. On the contrary, cross-interface bonds can help prevent interface fracture. A close relationship is found between atomic bond type and bonding strength: Nb-Nb bonds possess similar strength as Nb-Cr bonds but significantly higher than Nb-Ni bonds.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"281 ","pages":"Article 120426"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424007766","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering materials interface is key in determining the comprehensive service performance of different structures owing to its complex structure and interfacial chemical characteristics. In this work, we investigate the energetic properties and fracture mechanism of Laves (1 1 1)/ Ni6Nb7 (0 0 0 1) interfaces in electron beam welded Nb/GH3128 dissimilar joint interface using first principles calculations combined with high-resolution transmission electron microscope (HRTEM) experiments. 48 interface models are constructed considering both surface terminations and atomic configurations of interfaces. It is found that interface atomic structure change occurs in many interfaces. i.e. interface rearrangement. Compared to interfacial atomic configuration, surface termination has a greater impact on interface stability. The computational work of adhesion and interfacial energy indicate that all interfaces can stably exist and interface rearrangement is beneficial for improving the bonding strength of interfaces. Ni-Nb bonds at Laves (1 1 1)/ Ni6Nb7 (0 0 0 1) interfaces are proven to play the dominant role in weakening the interfacial cohesion. The effect of chemical bonds on the cohesion of interfaces is further quantified by integrating crystal orbital Hamilton populations (ICOHP). It turns out that in-plane chemical bonds are detrimental to interfacial bonding. On the contrary, cross-interface bonds can help prevent interface fracture. A close relationship is found between atomic bond type and bonding strength: Nb-Nb bonds possess similar strength as Nb-Cr bonds but significantly higher than Nb-Ni bonds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过第一原理计算揭示 Laves (1 1 1)/Ni6Nb7 (0 0 0 1) 界面的断裂机制
工程材料界面因其复杂的结构和界面化学特性而成为决定不同结构综合使用性能的关键。在这项工作中,我们利用第一性原理计算结合高分辨率透射电子显微镜(HRTEM)实验,研究了电子束焊接 Nb/GH3128 异种接头界面中 Laves (1 1 1)/Ni6Nb7 (0 0 0 1) 界面的能量特性和断裂机制。考虑到界面的表面终端和原子构型,构建了 48 个界面模型。研究发现,许多界面都发生了界面原子结构变化,即界面重排。与界面原子构型相比,表面终止对界面稳定性的影响更大。附着力和界面能的计算工作表明,所有界面都能稳定存在,界面重排有利于提高界面的结合强度。Laves (1 1 1)/Ni6Nb7 (0 0 0 1)界面上的 Ni-Nb 键被证明在削弱界面内聚力方面起主导作用。化学键对界面内聚力的影响通过整合晶体轨道汉密尔顿种群(ICOHP)得到了进一步量化。结果表明,面内化学键不利于界面结合。相反,跨面键有助于防止界面断裂。原子键类型与结合强度之间存在密切关系:Nb-Nb 键的强度与 Nb-Cr 键相似,但明显高于 Nb-Ni 键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Direct determination of diffusion flux in alloys via spatial separation of flux Ductilization of single-phase refractory high-entropy alloys via activation of edge dislocation Editorial Board Energy dissipation in pearlitic steel under impact loading A phase-field model bridging near-equilibrium and far-from-equilibrium alloy solidification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1