{"title":"Carbonaceous aerosol emissions from secondary lighting sources: Emission factors and optical properties","authors":"Chimurkar Navinya , Taveen Singh Kapoor , Gupta Anurag , Chandra Venkataraman , Harish C. Phuleria","doi":"10.1016/j.apr.2024.102321","DOIUrl":null,"url":null,"abstract":"<div><div>India is shifting towards cleaner residential fuels, but this transition does not fully address household lighting challenges. Power disruptions, especially in rural areas, lead to the use of secondary lighting sources such as kerosene lamps, edible oil lamps, and candles. Our previous work identified kerosene wick and hurricane lamps as major secondary lighting sources in Indian households. This study presents the emission factors (EF) and optical properties of carbonaceous aerosols from five major secondary lighting devices in India, measured using a laboratory extractor hood system. Dominant secondary lighting devices, such as simple wick lamps (61.4 ± 9.8 g kg⁻<sup>1</sup>) and hurricane lamps (17.2 ± 4.8 g kg⁻<sup>1</sup>), exhibit higher elemental carbon (EC) EFs than typical residential biomass burning. Sesame oil lamps, primarily used in India during the Diwali festival, also have significant EC emission potential, with an EC EF of 71.6 ± 16.9 g kg⁻<sup>1</sup>. The low absorption Angstrom exponent (AAE) of ∼1 at near-UV wavelengths indicates a dominance of black carbon (BC) and negligible brown carbon absorption, corroborated by very low organic carbon concentrations. India-wide EC emissions (12.5 Gg year⁻<sup>1</sup>) from residential kerosene lighting show a higher (∼50%) contribution from eastern India. Additionally, the use of oil lamps during the Diwali festival could emit ∼3 Gg of EC in two days, with a potential reduction of ∼90% if wax-based lamps replace oil lamps. These measured EFs, aerosol optical properties, and estimated emissions will help future studies derive more accurate climate and health impacts from these otherwise overlooked lighting devices.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 12","pages":"Article 102321"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002861","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
India is shifting towards cleaner residential fuels, but this transition does not fully address household lighting challenges. Power disruptions, especially in rural areas, lead to the use of secondary lighting sources such as kerosene lamps, edible oil lamps, and candles. Our previous work identified kerosene wick and hurricane lamps as major secondary lighting sources in Indian households. This study presents the emission factors (EF) and optical properties of carbonaceous aerosols from five major secondary lighting devices in India, measured using a laboratory extractor hood system. Dominant secondary lighting devices, such as simple wick lamps (61.4 ± 9.8 g kg⁻1) and hurricane lamps (17.2 ± 4.8 g kg⁻1), exhibit higher elemental carbon (EC) EFs than typical residential biomass burning. Sesame oil lamps, primarily used in India during the Diwali festival, also have significant EC emission potential, with an EC EF of 71.6 ± 16.9 g kg⁻1. The low absorption Angstrom exponent (AAE) of ∼1 at near-UV wavelengths indicates a dominance of black carbon (BC) and negligible brown carbon absorption, corroborated by very low organic carbon concentrations. India-wide EC emissions (12.5 Gg year⁻1) from residential kerosene lighting show a higher (∼50%) contribution from eastern India. Additionally, the use of oil lamps during the Diwali festival could emit ∼3 Gg of EC in two days, with a potential reduction of ∼90% if wax-based lamps replace oil lamps. These measured EFs, aerosol optical properties, and estimated emissions will help future studies derive more accurate climate and health impacts from these otherwise overlooked lighting devices.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.