{"title":"High magnetic susceptibility-based vanadate tellurite glasses for magneto-optical device applications","authors":"Yamagouni Paramesh Goud , Nirlakalla Ravi","doi":"10.1016/j.cap.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>Tellurite glasses modified with V<sub>2</sub>O<sub>5</sub>, Fe<sub>2</sub>O<sub>3</sub>, and Na<sub>2</sub>O (TVFN), along with Sm<sup>3+</sup>-doped Gd<sub>2</sub>O<sub>3</sub> and Sb<sub>2</sub>O<sub>3</sub> based tellurite (TVGSNSm) glasses evaluated for various properties. The thermal stability of these glasses, with a critical value of 105 °C advantageous to luminescence. Fourier transform infrared and micro-Raman bands were identified at 669, 745, 859, 943, and 1003 cm<sup>−1</sup> in the deconvolution. Electron spin resonance revealed a signal at a magnetic field of 340.75 mT (g = 1.77). The magnetic hysteresis of TVFN glasses from a vibrating sample magnetometer which possess coercivity 62 mT and remanence 1.5х10<sup>−2</sup> Am<sup>2</sup>/kg with a saturation magnetization 0.1975 A m<sup>2</sup>/kg and magnetic susceptibility as high as 0.1328. The magnetic nature confirmed by superconducting quantum interference device. Photoluminescence of Sm<sup>3+</sup>-doped TVGSNSm glasses excited by 408 nm showed 646 nm (red-orange) dominated emission band over the 603 nm band. These findings underscore the potential of TVFN glasses for applications in magneto-optical devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 206-213"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002189","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tellurite glasses modified with V2O5, Fe2O3, and Na2O (TVFN), along with Sm3+-doped Gd2O3 and Sb2O3 based tellurite (TVGSNSm) glasses evaluated for various properties. The thermal stability of these glasses, with a critical value of 105 °C advantageous to luminescence. Fourier transform infrared and micro-Raman bands were identified at 669, 745, 859, 943, and 1003 cm−1 in the deconvolution. Electron spin resonance revealed a signal at a magnetic field of 340.75 mT (g = 1.77). The magnetic hysteresis of TVFN glasses from a vibrating sample magnetometer which possess coercivity 62 mT and remanence 1.5х10−2 Am2/kg with a saturation magnetization 0.1975 A m2/kg and magnetic susceptibility as high as 0.1328. The magnetic nature confirmed by superconducting quantum interference device. Photoluminescence of Sm3+-doped TVGSNSm glasses excited by 408 nm showed 646 nm (red-orange) dominated emission band over the 603 nm band. These findings underscore the potential of TVFN glasses for applications in magneto-optical devices.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.