Pub Date : 2024-11-13DOI: 10.1016/j.cap.2024.11.005
Dongjin Jang , Minsik Kong , Jong Mok Ok
Many quantum materials undergo phase transitions above room temperature. However, thermodynamic evidence of these phase transitions is relatively scarce. For instance, detailed specific heat anomalies have rarely been reported for the transitions. In addition to considering intrinsic factors that obscure the thermodynamic manifestation of relevant degrees of freedom, it is also important to revisit measurement techniques based on firmly established physical principles. In this study, we introduce a transient heat-flux method for measuring heat capacity of solids, and report a specific heat anomaly in VO2, along with the reproduction of the standard specific heat capacity data of Cu. At present, our method is capable of measuring heat capacities ranging from 1 J/mol⋅K to 400 J/mol⋅K with an uncertainty of 5% across a temperature range from room temperature to 100 °C.
{"title":"Transient heat-flux method for measuring heat capacity: Examples from Cu and VO2","authors":"Dongjin Jang , Minsik Kong , Jong Mok Ok","doi":"10.1016/j.cap.2024.11.005","DOIUrl":"10.1016/j.cap.2024.11.005","url":null,"abstract":"<div><div>Many quantum materials undergo phase transitions above room temperature. However, thermodynamic evidence of these phase transitions is relatively scarce. For instance, detailed specific heat anomalies have rarely been reported for the transitions. In addition to considering intrinsic factors that obscure the thermodynamic manifestation of relevant degrees of freedom, it is also important to revisit measurement techniques based on firmly established physical principles. In this study, we introduce a transient heat-flux method for measuring heat capacity of solids, and report a specific heat anomaly in VO<sub>2</sub>, along with the reproduction of the standard specific heat capacity data of Cu. At present, our method is capable of measuring heat capacities ranging from 1 J/mol⋅K to 400 J/mol⋅K with an uncertainty of 5% across a temperature range from room temperature to 100 °C.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 55-59"},"PeriodicalIF":2.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.cap.2024.10.016
Sang Woo Kim, Yeon Jun Choi, Ye Rae Kim, Deok Hyeon Kim, Ye Jin In, Tae Han Kim, Bo Wha Lee
In this study, we investigated how adding nanopowders to a micropowder affects the packing fraction and permeability. The micropowder used was a Fe-Ni crystalline alloy, which was sieved to less than 38 μm to minimize the effect of particle size distribution. The nanopowders, magnetic Ni and nonmagnetic Zn, were added to the Fe-Ni at weight ratios of 95:5, 90:10, 85:15, and 80:20. The results showed that the permeability of Fe-Ni was higher when sieved to 38 μm compared to the overall particle size. When the magnetic Ni nanopowder was added to the Fe-Ni powder sieved to 38 μm, both the packing fraction and permeability increased up to a ratio of 85:15 and then decreased. On the other hand, when the nonmagnetic Zn nanopowder was added, the packing fraction increased up to a ratio of 85:15 and then decreased, while the permeability continued to decrease.
{"title":"Permeability modulation of Fe-Ni/nanoparticle (Ni, Zn) soft magnetic composites","authors":"Sang Woo Kim, Yeon Jun Choi, Ye Rae Kim, Deok Hyeon Kim, Ye Jin In, Tae Han Kim, Bo Wha Lee","doi":"10.1016/j.cap.2024.10.016","DOIUrl":"10.1016/j.cap.2024.10.016","url":null,"abstract":"<div><div>In this study, we investigated how adding nanopowders to a micropowder affects the packing fraction and permeability. The micropowder used was a Fe-Ni crystalline alloy, which was sieved to less than 38 μm to minimize the effect of particle size distribution. The nanopowders, magnetic Ni and nonmagnetic Zn, were added to the Fe-Ni at weight ratios of 95:5, 90:10, 85:15, and 80:20. The results showed that the permeability of Fe-Ni was higher when sieved to 38 μm compared to the overall particle size. When the magnetic Ni nanopowder was added to the Fe-Ni powder sieved to 38 μm, both the packing fraction and permeability increased up to a ratio of 85:15 and then decreased. On the other hand, when the nonmagnetic Zn nanopowder was added, the packing fraction increased up to a ratio of 85:15 and then decreased, while the permeability continued to decrease.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 42-46"},"PeriodicalIF":2.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1016/j.cap.2024.10.017
Palvinder Singh , Amit Sachdeva , Parmod K. Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro , Famiza Abdul Latif
The detail study of structural and ionic conductivity characterization of Poly (ethyl methacrylate) (PEMA) based polymer composite electrolyte were modified by the incorporation of Cadmium sulphide (CdS) nanomaterial. PEMA in addition with 40 % wt. potassium iodide (KI) and ethylene carbonate (EC) having 60 % wt., has the highest ionic conductivity of 4.65 × 10−5 S/cm when employed the solution casting technique. Cadmium Sulphide (CdS) was incorporated with PEMA + KI 40 % wt. + EC 60 % wt. sample to get maximum conductivity sample. The highest ionic conductivity 2.65×10−3S/cm, was attained at 7 % weight percentage of Cadmium sulphide (CdS). The conductive sample's morphology was examined using SEM, its amorphicity and crystalline structure was investigated using Fourier transform infrared (FTIR) technique, and FTIR 'wavenumbers of the maximum conductive sample of PEMA polymer + KI salt + EC plastizer and PEMA polymer + KI salt + EC plastizer + CdS nanoparticles were compared. X-ray diffraction (XRD) was used to identify the amorphous nature of the maximum conductive sample of polymer composite electrolyte. Differential scanning calorimetry (DSC) analysis was used to find out the glass transition (Tg) temperature of maximum conducting sample of polymer composite. The doctor blade method was employed to develop the dye sensitized solar cell (DSSC), and it had been observed that, under one sunlight situation, the energy conversion efficiency was 2.09 %, having parameters fill factor was 79.77 %.
{"title":"Effect of cadmium sulphide on poly (ethyl methacrylate) (PEMA) based electrolyte nanocomposite and its application in dye sensitized solar cell (DSSC)","authors":"Palvinder Singh , Amit Sachdeva , Parmod K. Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro , Famiza Abdul Latif","doi":"10.1016/j.cap.2024.10.017","DOIUrl":"10.1016/j.cap.2024.10.017","url":null,"abstract":"<div><div>The detail study of structural and ionic conductivity characterization of Poly (ethyl methacrylate) (PEMA) based polymer composite electrolyte were modified by the incorporation of Cadmium sulphide (CdS) nanomaterial. PEMA in addition with 40 % wt. potassium iodide (KI) and ethylene carbonate (EC) having 60 % wt., has the highest ionic conductivity of 4.65 × 10<sup>−5</sup> S/cm when employed the solution casting technique. Cadmium Sulphide (CdS) was incorporated with PEMA + KI 40 % wt. + EC 60 % wt. sample to get maximum conductivity sample. The highest ionic conductivity 2.65×10<sup>−3</sup>S/cm, was attained at 7 % weight percentage of Cadmium sulphide (CdS). The conductive sample's morphology was examined using SEM, its amorphicity and crystalline structure was investigated using Fourier transform infrared (FTIR) technique, and FTIR 'wavenumbers of the maximum conductive sample of PEMA polymer + KI salt + EC plastizer and PEMA polymer + KI salt + EC plastizer + CdS nanoparticles were compared. X-ray diffraction (XRD) was used to identify the amorphous nature of the maximum conductive sample of polymer composite electrolyte. Differential scanning calorimetry (DSC) analysis was used to find out the glass transition (Tg) temperature of maximum conducting sample of polymer composite. The doctor blade method was employed to develop the dye sensitized solar cell (DSSC), and it had been observed that, under one sunlight situation, the energy conversion efficiency was 2.09 %, having parameters fill factor was 79.77 %.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 36-41"},"PeriodicalIF":2.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.cap.2024.10.014
Brahim Marfoua , Jisang Hong
Altermagnets represent a distinctive class of antiferromagnetic materials characterized by non-overlapping spin bands and attract extensive research efforts. Herein, we investigate the interplay among electronic, magnetic, and spin transport phenomena of the Janus V2SeTeO monolayer. The Janus monolayer has a direct band gap of 0.32 eV. The Janus V2SeTeO layer has an in-plane magnetic anisotropy along (110) direction. The incorporation of spin-orbit coupling (SOC) induces a Rashba-type band structure with a Rashba coefficient of 1.02 eV Å. The Rashba coefficient is insensitive to the compressive strain. In contrast, it is suppressed with tensile strain and becomes almost zero at 3 % tensile strain. The maximum SHC of around ∼ −65 (ℏ/e)S/cm is achieved with hole doping. The magnitudes of SHC remain comparable to those in typical topological materials. Overall, this investigation provides fundamental insights into the magnetic, Rashba, and spin transport properties of the Janus V2SeTeO altermagnet monolayer.
{"title":"Strain-dependent Rashba effect, and spin Hall conductivity in the altermagnetic Janus V2SeTeO monolayer","authors":"Brahim Marfoua , Jisang Hong","doi":"10.1016/j.cap.2024.10.014","DOIUrl":"10.1016/j.cap.2024.10.014","url":null,"abstract":"<div><div>Altermagnets represent a distinctive class of antiferromagnetic materials characterized by non-overlapping spin bands and attract extensive research efforts. Herein, we investigate the interplay among electronic, magnetic, and spin transport phenomena of the Janus V<sub>2</sub>SeTeO monolayer. The Janus monolayer has a direct band gap of 0.32 eV. The Janus V<sub>2</sub>SeTeO layer has an in-plane magnetic anisotropy along (110) direction. The incorporation of spin-orbit coupling (SOC) induces a Rashba-type band structure with a Rashba coefficient of 1.02 eV Å. The Rashba coefficient is insensitive to the compressive strain. In contrast, it is suppressed with tensile strain and becomes almost zero at 3 % tensile strain. The maximum SHC of around ∼ −65 (ℏ/e)S/cm is achieved with hole doping. The magnitudes of SHC remain comparable to those in typical topological materials. Overall, this investigation provides fundamental insights into the magnetic, Rashba, and spin transport properties of the Janus V<sub>2</sub>SeTeO altermagnet monolayer.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 47-54"},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.cap.2024.10.015
Jun-Hwan Choi, Jung-Sik Kim
Ultra-thin (20 μm) silicon strain gauges were fabricated with silicon-on-insulator (SOI) wafer by a newly-conceived wet etching process. Buffered oxide etchant (BOE, NH4F: HF = 6:1) solution with additives of octylamine and octanol was used for wet etching process in which the operating temperature was 50°C. Photoresist as a passivation layer was deposited on the upper side of SOI wafer to minimize strain gauge damage by chemical etchants. Small amount of octylamine and octanol were added to BOE solution to improve surface wettability and SiO2/Si selectivity. The fabricated strain gauges were attached to the pressure diaphragm and the performance of strain gauge was investigated by measuring with the hydraulic pressure system. The resistance changed linearly with tensile and compressive strains. Maximum values of non-linearity, hysteresis, thermal coefficient of resistance (TCR) and sensitivity were -0.341 %, 0.909 %, 4128 ppm/°C and 34.22 mV/V respectively. The fabricated strain gauges might be well applicable to the hydrogen pressure sensor which is detectable for high pressure range (0–900 bar).
{"title":"Design and fabrication of ultrathin silicon-based strain gauges for piezoresistive pressure sensor","authors":"Jun-Hwan Choi, Jung-Sik Kim","doi":"10.1016/j.cap.2024.10.015","DOIUrl":"10.1016/j.cap.2024.10.015","url":null,"abstract":"<div><div>Ultra-thin (20 μm) silicon strain gauges were fabricated with silicon-on-insulator (SOI) wafer <strong>by a newly-conceived wet etching process. Buffered oxide etchant (BOE, NH</strong><sub><strong>4</strong></sub><strong>F: HF = 6:1) solution with additives of octylamine and octanol was used for wet etching process in which the operating temperature was 50°C.</strong> Photoresist as a passivation layer was deposited on the upper side of SOI wafer to minimize strain gauge damage by chemical etchants. Small amount of octylamine and octanol were added to BOE solution to improve surface wettability and SiO<sub>2</sub>/Si selectivity. The fabricated strain gauges were attached to the pressure diaphragm and the performance of strain gauge was investigated by measuring with the hydraulic pressure system. The resistance changed linearly with tensile and compressive strains. <strong>Maximum values of non-linearity, hysteresis, thermal coefficient of resistance (TCR) and sensitivity were -0.341 %, 0.909 %, 4128 ppm/°C and 34.22 mV/V respectively. The fabricated strain gauges might be well applicable to the hydrogen pressure sensor which is detectable for high pressure range (0–900 bar).</strong></div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 28-35"},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cap.2024.10.007
Hyun Don Kim , Minseon Gu , Kyu-Myung Lee , Hanyeol Ahn , Jinwoo Byun , Gukhyon Yon , Junghyun Beak , Hyeongjoon Lim , Jaemo Jung , Jaehyeon Park , Jwa Soon Kim , HaeJoon Hahm , Soobang Kim , Won Ja Min , Moon Seop Hyun , Yun Chang Park , Gyungtae Kim , Yongsup Park , Moonsup Han , Eunjip Choi , Young Jun Chang
Silicon nitride (SiNx) serves as the charge trap layer in current 3D NAND flash memory devices. The precise formation mechanism and electronic structure of localized defect trap states in SiNx remain elusive. Here, we present a refined experimental methodology to elucidate the in-gap defect states and the band gaps in amorphous SiNx thin films. Our approach integrates high-resolution reflection electron energy loss spectroscopy (REELS) and spectroscopic ellipsometry (SE) for comprehensive analysis. By systematical analysis, we aim to provide a robust method for determining in-gap electronic states in SiNx. We investigated two different SiNx films prepared by plasma-enhanced chemical vapor deposition and sputtering. Our analysis revealed several distinct in-gap states and determined band gap energies. This approach not only provide advanced spectroscopic methods to characterize the defect electronic states in SiNx, but also applicable to other large band gap semiconductors or dielectrics to predict device-level characteristics for future devices.
{"title":"Advanced spectroscopic methods for probing in-gap defect states in amorphous SiNx for charge trap memory applications","authors":"Hyun Don Kim , Minseon Gu , Kyu-Myung Lee , Hanyeol Ahn , Jinwoo Byun , Gukhyon Yon , Junghyun Beak , Hyeongjoon Lim , Jaemo Jung , Jaehyeon Park , Jwa Soon Kim , HaeJoon Hahm , Soobang Kim , Won Ja Min , Moon Seop Hyun , Yun Chang Park , Gyungtae Kim , Yongsup Park , Moonsup Han , Eunjip Choi , Young Jun Chang","doi":"10.1016/j.cap.2024.10.007","DOIUrl":"10.1016/j.cap.2024.10.007","url":null,"abstract":"<div><div>Silicon nitride (SiN<sub>x</sub>) serves as the charge trap layer in current 3D NAND flash memory devices. The precise formation mechanism and electronic structure of localized defect trap states in SiN<sub>x</sub> remain elusive. Here, we present a refined experimental methodology to elucidate the in-gap defect states and the band gaps in amorphous SiN<sub>x</sub> thin films. Our approach integrates high-resolution reflection electron energy loss spectroscopy (REELS) and spectroscopic ellipsometry (SE) for comprehensive analysis. By systematical analysis, we aim to provide a robust method for determining in-gap electronic states in SiN<sub>x</sub>. We investigated two different SiN<sub>x</sub> films prepared by plasma-enhanced chemical vapor deposition and sputtering. Our analysis revealed several distinct in-gap states and determined band gap energies. This approach not only provide advanced spectroscopic methods to characterize the defect electronic states in SiN<sub>x</sub>, but also applicable to other large band gap semiconductors or dielectrics to predict device-level characteristics for future devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 21-27"},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.cap.2024.10.011
Y.C. Goswami , R. Bisauriya , A.A. Hlaing , T.T. Moe , Jyoti Bala Kaundal , D. Aryanto , R. Yudianti
SnO2/ZnS nanocomposites were successfully synthesized using a modified hydrothermal route. The synthesis involved separate co-precipitation of SnO2 and ZnS, followed by ultrasonic stirring and hydrothermal treatment. The resulting nanocomposites exhibited controlled size and composition. By adjusting synthesis parameters such as the molar ratio of Sn to Zn, reaction temperature, and reaction time, the morphology and properties of the nanocomposites could be finely tuned. The synthesized SnO2/ZnS nanocomposites demonstrated remarkable improvements in photocatalytic performance compared to pure SnO2 or ZnS nanoparticles. This enhancement was attributed to the nanocomposites' enhanced charge separation, increased surface area, and improved light absorption capabilities. As a result, the SnO2/ZnS nanocomposites hold great promise for a wide range of applications, including environmental remediation, water splitting, and solar energy conversion.
{"title":"Enhancing photocatalytic performance of SnO2/ZnS nanocomposites synthesized via dual-step precipitation and ultrasonicated hydrothermal route","authors":"Y.C. Goswami , R. Bisauriya , A.A. Hlaing , T.T. Moe , Jyoti Bala Kaundal , D. Aryanto , R. Yudianti","doi":"10.1016/j.cap.2024.10.011","DOIUrl":"10.1016/j.cap.2024.10.011","url":null,"abstract":"<div><div>SnO<sub>2</sub>/ZnS nanocomposites were successfully synthesized using a modified hydrothermal route. The synthesis involved separate co-precipitation of SnO<sub>2</sub> and ZnS, followed by ultrasonic stirring and hydrothermal treatment. The resulting nanocomposites exhibited controlled size and composition. By adjusting synthesis parameters such as the molar ratio of Sn to Zn, reaction temperature, and reaction time, the morphology and properties of the nanocomposites could be finely tuned. The synthesized SnO<sub>2</sub>/ZnS nanocomposites demonstrated remarkable improvements in photocatalytic performance compared to pure SnO<sub>2</sub> or ZnS nanoparticles. This enhancement was attributed to the nanocomposites' enhanced charge separation, increased surface area, and improved light absorption capabilities. As a result, the SnO<sub>2</sub>/ZnS nanocomposites hold great promise for a wide range of applications, including environmental remediation, water splitting, and solar energy conversion.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 275-283"},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of copper composition on the structure and mechanical properties of CuAlNi alloys was investigated using MD simulation and characterization methods. It was found that the structure of CuAlNi alloys markedly resembles Cu composition, which alterations from the initial single (FCC) to (BCC) structure and then to a duplex BCC structure as the Cu content is raised. Nanoindentation measurements show that the hardness of CuAlNi alloys increases with Cu content. When there are more Al elements, the surface of the material is first combined with ions in seawater so that the corrosion potential is significantly reduced. This research seeks to identify CuAlNi alloys with improved properties through molecular dynamics simulations and experimental analyses, highlighting the connections between microstructure and mechanical behavior.
{"title":"Mechanical and electrochemical characterization of CuAlNi alloys","authors":"Jia-Yuan Chen , Hoang-Giang Nguyen , Ming-Hong Lin , Te-Hua Fang","doi":"10.1016/j.cap.2024.10.008","DOIUrl":"10.1016/j.cap.2024.10.008","url":null,"abstract":"<div><div>The effect of copper composition on the structure and mechanical properties of CuAlNi alloys was investigated using MD simulation and characterization methods. It was found that the structure of CuAlNi alloys markedly resembles Cu composition, which alterations from the initial single (FCC) to (BCC) structure and then to a duplex BCC structure as the Cu content is raised. Nanoindentation measurements show that the hardness of CuAlNi alloys increases with Cu content. When there are more Al elements, the surface of the material is first combined with ions in seawater so that the corrosion potential is significantly reduced. This research seeks to identify CuAlNi alloys with improved properties through molecular dynamics simulations and experimental analyses, highlighting the connections between microstructure and mechanical behavior.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 8-20"},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.cap.2024.10.012
Upendra Kumar , Hyeon Woo Kim , Gyanendra Kumar Maurya , Bincy Babu Raj , Sobhit Singh , Ajay Kumar Kushwaha , Sung Beom Cho , Hyunseok Ko
The investigation of emerging non-toxic perovskite materials has been undertaken to advance the fabrication of environmentally sustainable lead-free perovskite solar cells. This study introduces a machine learning methodology aimed at predicting innovative halide perovskite materials that hold promise for use in photovoltaic applications. The seven newly predicted materials are as follows: CsMnCl4, Rb3Mn2Cl9, Rb4MnCl6, Rb3MnCl5, RbMn2Cl7, RbMn4Cl9, and CsIn2Cl7. The predicted compounds are first screened using a machine learning approach, and their validity is subsequently verified through density functional theory calculations. CsMnCl4 is notable among them, displaying a bandgap of 1.37 eV, falling within the Shockley-Queisser limit, making it suitable for photovoltaic applications. Through the integration of machine learning and density functional theory, this study presents a methodology that is more effective and thorough for the discovery and design of materials.
为了推动制造环境可持续的无铅过氧化物太阳能电池,对新兴的无毒过氧化物材料进行了研究。本研究介绍了一种机器学习方法,旨在预测有望用于光伏应用的创新型卤化物包晶材料。新预测的七种材料如下:CsMnCl4、Rb3Mn2Cl9、Rb4MnCl6、Rb3MnCl5、RbMn2Cl7、RbMn4Cl9 和 CsIn2Cl7。首先使用机器学习方法对预测的化合物进行筛选,然后通过密度泛函理论计算验证其有效性。CsMnCl4 是其中的佼佼者,它显示出 1.37 eV 的带隙,处于肖克利-奎塞尔极限之内,因此适合光伏应用。通过机器学习与密度泛函理论的结合,本研究提出了一种更有效、更全面的方法来发现和设计材料。
{"title":"Machine learning-enhanced design of lead-free halide perovskite materials using density functional theory","authors":"Upendra Kumar , Hyeon Woo Kim , Gyanendra Kumar Maurya , Bincy Babu Raj , Sobhit Singh , Ajay Kumar Kushwaha , Sung Beom Cho , Hyunseok Ko","doi":"10.1016/j.cap.2024.10.012","DOIUrl":"10.1016/j.cap.2024.10.012","url":null,"abstract":"<div><div>The investigation of emerging non-toxic perovskite materials has been undertaken to advance the fabrication of environmentally sustainable lead-free perovskite solar cells. This study introduces a machine learning methodology aimed at predicting innovative halide perovskite materials that hold promise for use in photovoltaic applications. The seven newly predicted materials are as follows: CsMnCl<sub>4</sub>, Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>9</sub>, Rb<sub>4</sub>MnCl<sub>6</sub>, Rb<sub>3</sub>MnCl<sub>5</sub>, RbMn<sub>2</sub>Cl<sub>7</sub>, RbMn<sub>4</sub>Cl<sub>9</sub>, and CsIn<sub>2</sub>Cl<sub>7</sub>. The predicted compounds are first screened using a machine learning approach, and their validity is subsequently verified through density functional theory calculations. CsMnCl<sub>4</sub> is notable among them, displaying a bandgap of 1.37 eV, falling within the Shockley-Queisser limit, making it suitable for photovoltaic applications. Through the integration of machine learning and density functional theory, this study presents a methodology that is more effective and thorough for the discovery and design of materials.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 1-7"},"PeriodicalIF":2.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report the formation of a buried ultra-thin layer of Ag clusters in a Si substrate through 6 keV Ag⁺ ion beam implantation, which exhibits a significant enhancement of the Raman signal. This suggests the development of a reliable and reusable chip for Surface Enhanced Raman Spectroscopy (SERS). The presence of a clustered Ag layer in Si also leads to pronounced UV absorption, thus expanding the material's potential in safeguarding from photo-degradation and optoelectronic devices. Physicochemical analysis conducted using X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy, and cross-sectional Transmission Electron Microscopy (TEM) confirms the formation of a 9 nm buried layer of Ag clusters within the amorphous Si layer. This method of Ag ion implantation in Si offers a simple approach to engineering surfaces with enhanced optical and spectroscopic characteristics.
我们报告了通过 6 keV Ag⁺离子束植入在硅基底上形成的埋藏式超薄银簇层,该层可显著增强拉曼信号。这预示着一种可靠且可重复使用的表面增强拉曼光谱(SERS)芯片即将问世。硅中存在的簇状银层也导致了明显的紫外线吸收,从而扩大了该材料在防止光降解和光电设备方面的潜力。利用 X 射线光电子能谱(XPS)、原子力显微镜和横截面透射电子显微镜(TEM)进行的物理化学分析证实,在非晶态硅层中形成了 9 纳米的银簇埋层。这种在硅中植入银离子的方法提供了一种简便的方法,可用于制造具有增强光学和光谱特性的表面。
{"title":"Development of an efficient UV absorber and reusable SERS chip by buried Ag ion implantation in Si substrate","authors":"Sudip Bhowmick , Biswarup Satpati , Debasree Chowdhury , Prasanta Karmakar","doi":"10.1016/j.cap.2024.10.013","DOIUrl":"10.1016/j.cap.2024.10.013","url":null,"abstract":"<div><div>We report the formation of a buried ultra-thin layer of Ag clusters in a Si substrate through 6 keV Ag⁺ ion beam implantation, which exhibits a significant enhancement of the Raman signal. This suggests the development of a reliable and reusable chip for Surface Enhanced Raman Spectroscopy (SERS). The presence of a clustered Ag layer in Si also leads to pronounced UV absorption, thus expanding the material's potential in safeguarding from photo-degradation and optoelectronic devices. Physicochemical analysis conducted using X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy, and cross-sectional Transmission Electron Microscopy (TEM) confirms the formation of a 9 nm buried layer of Ag clusters within the amorphous Si layer. This method of Ag ion implantation in Si offers a simple approach to engineering surfaces with enhanced optical and spectroscopic characteristics.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 267-274"},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}