{"title":"Multicore fiber design housing a fluorine-doped low-latency core and cutoff shifted cores","authors":"Yuto Sagae, Takashi Matsui, Takayoshi Mori, Kazuhide Nakajima","doi":"10.1016/j.yofte.2024.103993","DOIUrl":null,"url":null,"abstract":"<div><div>Design of heterogeneous 4-core fiber housing a low-latency core and conventional cutoff shifted cores in a standard 125-μm cladding diameter is investigated to enable signal processing delay reduction using common mode impairment. For the low-latency core, 1-μs propagation delay reduction and an optical signal-to-noise ratio (OSNR) comparable to or greater than that of cutoff shifted cores are required. In this paper, we consider an F-doped core and depressed cladding structure with a large effective area as the low-latency core. It can be expected to achieve sufficient group delay reduction of the low-latency core, the OSNR unification among heterogeneous cores, and low inter-core crosstalk in a standard 125-μm cladding diameter. Consequently, we revealed the optimized low-latency core achieving the group delay reduction of 1 μs and the OSNR as same level as the cutoff shifted cores as we expected. The designed heterogeneous 4-core fiber with the standard 125-μm cladding diameter suppressed the inter-core crosstalk to be low enough to support a 1,000-km long transmission. We expect the figure-of-merit (FoM) of the 4-core fiber to be as high as previously reported 4-core fibers, and the FoM improvement are found when the low latency core and cutoff shifted core are placed alternately thanks to the core heterogeneity.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 103993"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003389","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Design of heterogeneous 4-core fiber housing a low-latency core and conventional cutoff shifted cores in a standard 125-μm cladding diameter is investigated to enable signal processing delay reduction using common mode impairment. For the low-latency core, 1-μs propagation delay reduction and an optical signal-to-noise ratio (OSNR) comparable to or greater than that of cutoff shifted cores are required. In this paper, we consider an F-doped core and depressed cladding structure with a large effective area as the low-latency core. It can be expected to achieve sufficient group delay reduction of the low-latency core, the OSNR unification among heterogeneous cores, and low inter-core crosstalk in a standard 125-μm cladding diameter. Consequently, we revealed the optimized low-latency core achieving the group delay reduction of 1 μs and the OSNR as same level as the cutoff shifted cores as we expected. The designed heterogeneous 4-core fiber with the standard 125-μm cladding diameter suppressed the inter-core crosstalk to be low enough to support a 1,000-km long transmission. We expect the figure-of-merit (FoM) of the 4-core fiber to be as high as previously reported 4-core fibers, and the FoM improvement are found when the low latency core and cutoff shifted core are placed alternately thanks to the core heterogeneity.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.