Zheng-Fei Yan , Qing-Song Huang , Jing Yang , Xue-Yi Qiao , Bo Xu , Wei Xia , Ling-Qia Su
{"title":"Enhanced degradation of crude oil by immobilized bacterial consortium through eliminating microbial flocculation towards crude oil","authors":"Zheng-Fei Yan , Qing-Song Huang , Jing Yang , Xue-Yi Qiao , Bo Xu , Wei Xia , Ling-Qia Su","doi":"10.1016/j.ibiod.2024.105935","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial degradation is considered an effective and sustainable technique for the remediation of oily sludge; thus, the acquisition of crude oil-degrading bacteria is crucial for effective bioremediation. This study introduces a novel domestication-enrichment-isolation (DEI) strategy to isolate crude oil-degrading bacteria from oily sludge. Two strains, <em>Rhodococcus rhodochrous</em> JS-24 (R.rh) and <em>Gordonia cholesterolivorans</em> JS-13 (G.ch), demonstrated the highest degradation rates of 53.7% and 34.6%, respectively, within 7 days. While no synergistic effect was observed with their combined use in free bacterial consortia, and the overall degradation rate decreased to 51.9 %, which was weaker than that of R. rh treatment alone. The decrease in degradation rate is attributed to microbial flocculation towards crude oil: most droplets of crude oil were encapsulated into spherical aggregations by G. ch, thereby hindering the contact and degradation of droplets by R. rh. In contrast, immobilization technology significantly enhanced crude oil degradation by eliminating this flocculation effect. The immobilized bacterial consortium achieved a 95.5% degradation rate, representing the highest degradation rate reported for bacterial consortia. This study reveals for the first time that the side effects of bioflocculation on crude oil degradation and provides guidance for the construction of bacterial consortium.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105935"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524002063","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial degradation is considered an effective and sustainable technique for the remediation of oily sludge; thus, the acquisition of crude oil-degrading bacteria is crucial for effective bioremediation. This study introduces a novel domestication-enrichment-isolation (DEI) strategy to isolate crude oil-degrading bacteria from oily sludge. Two strains, Rhodococcus rhodochrous JS-24 (R.rh) and Gordonia cholesterolivorans JS-13 (G.ch), demonstrated the highest degradation rates of 53.7% and 34.6%, respectively, within 7 days. While no synergistic effect was observed with their combined use in free bacterial consortia, and the overall degradation rate decreased to 51.9 %, which was weaker than that of R. rh treatment alone. The decrease in degradation rate is attributed to microbial flocculation towards crude oil: most droplets of crude oil were encapsulated into spherical aggregations by G. ch, thereby hindering the contact and degradation of droplets by R. rh. In contrast, immobilization technology significantly enhanced crude oil degradation by eliminating this flocculation effect. The immobilized bacterial consortium achieved a 95.5% degradation rate, representing the highest degradation rate reported for bacterial consortia. This study reveals for the first time that the side effects of bioflocculation on crude oil degradation and provides guidance for the construction of bacterial consortium.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.