{"title":"Role of oxygen in enhancing magnetism of Fe-doped MoSi2N4 monolayer from first-principles study","authors":"Yueqin Wang , Huan Cao , Fuzhang Chen , Yin Liu","doi":"10.1016/j.ssc.2024.115716","DOIUrl":null,"url":null,"abstract":"<div><div>MoSi<sub>2</sub>N<sub>4</sub> is a new type of two-dimensional layered material, which is semiconducting with novel valley-physics properties and excellent stability, suggesting its great applications in the field of valleytronics and spintronics. In present work, the spin-polarized electronic structure and magnetic properties of different doping models of MoSi<sub>2</sub>N<sub>4</sub> are investigated based on first principles. The results show that Fe doping presents a semi-metallic band structure, inducing a total magnetic moment of 4.01 μ<sub>B</sub>. For Fe + O co-doping configuration, further introduction of the O atom increases the total magnetic moment to 5.0 μ<sub>B</sub>. The magnetic moments mainly originate from the coupling of Fe-3<em>d</em> and O-2<em>p</em> and Mo-4<em>d</em> and O-2<em>p</em>. Then, the calculations show that the stability of Fe + O + Fe co-doping configuration is enhanced and exhibits antiferromagnetic order with a total magnetic moment of about 0.98 μ<sub>B</sub>. Due to the antiferromagnetic interaction, the magnetic moment is mainly derived from the hybridization of Mo-4<em>d</em> and O-2<em>p</em> states, and a transition from semi-metallic to metallic band structure is observed.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"394 ","pages":"Article 115716"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003810982400293X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
MoSi2N4 is a new type of two-dimensional layered material, which is semiconducting with novel valley-physics properties and excellent stability, suggesting its great applications in the field of valleytronics and spintronics. In present work, the spin-polarized electronic structure and magnetic properties of different doping models of MoSi2N4 are investigated based on first principles. The results show that Fe doping presents a semi-metallic band structure, inducing a total magnetic moment of 4.01 μB. For Fe + O co-doping configuration, further introduction of the O atom increases the total magnetic moment to 5.0 μB. The magnetic moments mainly originate from the coupling of Fe-3d and O-2p and Mo-4d and O-2p. Then, the calculations show that the stability of Fe + O + Fe co-doping configuration is enhanced and exhibits antiferromagnetic order with a total magnetic moment of about 0.98 μB. Due to the antiferromagnetic interaction, the magnetic moment is mainly derived from the hybridization of Mo-4d and O-2p states, and a transition from semi-metallic to metallic band structure is observed.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.