Ballistic properties of bioinspired nacre-like ceramic/polyurea staggered composite structures

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Impact Engineering Pub Date : 2024-10-02 DOI:10.1016/j.ijimpeng.2024.105137
{"title":"Ballistic properties of bioinspired nacre-like ceramic/polyurea staggered composite structures","authors":"","doi":"10.1016/j.ijimpeng.2024.105137","DOIUrl":null,"url":null,"abstract":"<div><div>We proposed a bioinspired ceramic/polyurea composite plate that draws on a “brick-mortar” arrangement of nacre layer, with a periodic three-dimensional structure and interlayers polyurea elastomers. We fired a 12.7 mm armor-piercing incendiary bullet using a ballistic gun to conduct depth-of-penetration (DOP) experiments. We analyzed the damage, fracture morphology, and residual DOP of ceramic/polyurea-staggered composite structures (CPSCS), with a theoretical prediction model for the residual DOP. Using the adaptive FEM-SPH algorithm, we compared the damage morphology of CPSCSs. We analyzed projectile penetration process and summarized four toughening modes using stress wave propagation. Based on simulation fitting and theoretical calculations, we obtained the residual DOP curves at different projectile velocities and analyzed the toughening effect of the CPSCSs through the energy dissipation of each structural component. When the areal density was the same, the residual DOP of the CPSCSs decreased by 33.9 %, and the critical velocity theoretically increased by 32.72 %. The error between the model calculations and experimental results was 11 %. The CPSCSs enabled the ceramic to increase the energy absorption efficiency by 179.70 %. With the same structural form, changing the thickness of only one component did not have the same effect on the structural energy-absorption efficiency as changing the entire form.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002628","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a bioinspired ceramic/polyurea composite plate that draws on a “brick-mortar” arrangement of nacre layer, with a periodic three-dimensional structure and interlayers polyurea elastomers. We fired a 12.7 mm armor-piercing incendiary bullet using a ballistic gun to conduct depth-of-penetration (DOP) experiments. We analyzed the damage, fracture morphology, and residual DOP of ceramic/polyurea-staggered composite structures (CPSCS), with a theoretical prediction model for the residual DOP. Using the adaptive FEM-SPH algorithm, we compared the damage morphology of CPSCSs. We analyzed projectile penetration process and summarized four toughening modes using stress wave propagation. Based on simulation fitting and theoretical calculations, we obtained the residual DOP curves at different projectile velocities and analyzed the toughening effect of the CPSCSs through the energy dissipation of each structural component. When the areal density was the same, the residual DOP of the CPSCSs decreased by 33.9 %, and the critical velocity theoretically increased by 32.72 %. The error between the model calculations and experimental results was 11 %. The CPSCSs enabled the ceramic to increase the energy absorption efficiency by 179.70 %. With the same structural form, changing the thickness of only one component did not have the same effect on the structural energy-absorption efficiency as changing the entire form.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物启发的珍珠质陶瓷/聚脲交错复合结构的弹道特性
我们提出了一种生物启发陶瓷/聚脲复合板,它借鉴了珍珠层的 "砖-砂 "排列,具有周期性三维结构和聚脲弹性体夹层。我们使用弹道枪发射了一颗 12.7 毫米穿甲燃烧弹,进行了穿透深度(DOP)实验。我们分析了陶瓷/聚脲交错复合材料结构(CPSCS)的损伤、断裂形态和残余穿透深度,并建立了残余穿透深度的理论预测模型。利用自适应 FEM-SPH 算法,我们比较了 CPSCS 的损伤形态。我们分析了弹丸穿透过程,并利用应力波传播总结了四种增韧模式。基于模拟拟合和理论计算,我们得到了不同射弹速度下的残余 DOP 曲线,并通过各结构组件的能量耗散分析了 CPSCS 的增韧效果。当等密度相同时,CPSCS 的残余 DOP 下降了 33.9%,临界速度理论上增加了 32.72%。模型计算与实验结果之间的误差为 11%。CPSCS 使陶瓷的能量吸收效率提高了 179.70%。在结构形式相同的情况下,仅改变一个部件的厚度对结构能量吸收效率的影响不如改变整个结构形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
期刊最新文献
Crack arrest characteristics and dynamic fracture parameters of moving cracks encountering double holes under impact loads Performance assessment of an innovative light and compact dust shield for DISC onboard Comet Interceptor/ESA space probes Analysis and evaluation of suitability of high-pressure dynamic constitutive model for concrete under blast and impact loading Dynamic failures at the metal-glass interface under impact loading Comparative investigation of shock pressure, shock duration, pressure decay time, and elastic energy of both porous gelatin and pure gelatin in shock state
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1