{"title":"Heat transfer enhancement in pressurized solar cavity receivers with densely packed metallic wire mesh","authors":"Sayuj Sasidharan, Pradip Dutta","doi":"10.1016/j.tsep.2024.102964","DOIUrl":null,"url":null,"abstract":"<div><div>Pressurized solar receivers are promising candidates as heat sources for integration with high-efficiency closed-loop air and supercritical carbon-dioxide based Brayton cycles. This paper focuses on the heat transfer enhancement of such a solar receiver using inline stacked wire mesh fibers in the heat transfer fluid flow path. The study involves modelling, characterization, and performance evaluation of a cavity-receiver with densely packed wire meshes. A new experimentally validated hybrid numerical approach is presented for modelling the inline stacked wire mesh layers. Initially, a direct numerical simulation at the pore scale on a representative elementary volume (REV) of the wire mesh geometry is performed for determining the hydrodynamic and thermal characteristics of the medium. Subsequently, these hydrodynamic and thermal properties are used to define a volume-averaged macroscopic porous medium. Experiments are performed using a rectangular channel stacked with stainless steel wire meshes, heated using a plate heater, and pressurized air supplied using a reciprocating compressor. Both numerical and experimental studies are performed for a Reynolds number range of 28 to 213 resulting in a Nusselt number range of 7.2 to 213. The porous medium model predictions for pressure gradient are within 17 %, while predictions for outlet air temperature are within 5 % of the experimentally obtained values. The study predicts a maximum heat transfer enhancement of five times in a channel stacked with wire meshes compared to the case of a clear channel, but incurring a peak pressure drop of only about 1.1 kPa.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"55 ","pages":"Article 102964"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924005821","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Pressurized solar receivers are promising candidates as heat sources for integration with high-efficiency closed-loop air and supercritical carbon-dioxide based Brayton cycles. This paper focuses on the heat transfer enhancement of such a solar receiver using inline stacked wire mesh fibers in the heat transfer fluid flow path. The study involves modelling, characterization, and performance evaluation of a cavity-receiver with densely packed wire meshes. A new experimentally validated hybrid numerical approach is presented for modelling the inline stacked wire mesh layers. Initially, a direct numerical simulation at the pore scale on a representative elementary volume (REV) of the wire mesh geometry is performed for determining the hydrodynamic and thermal characteristics of the medium. Subsequently, these hydrodynamic and thermal properties are used to define a volume-averaged macroscopic porous medium. Experiments are performed using a rectangular channel stacked with stainless steel wire meshes, heated using a plate heater, and pressurized air supplied using a reciprocating compressor. Both numerical and experimental studies are performed for a Reynolds number range of 28 to 213 resulting in a Nusselt number range of 7.2 to 213. The porous medium model predictions for pressure gradient are within 17 %, while predictions for outlet air temperature are within 5 % of the experimentally obtained values. The study predicts a maximum heat transfer enhancement of five times in a channel stacked with wire meshes compared to the case of a clear channel, but incurring a peak pressure drop of only about 1.1 kPa.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.