Numerical prediction of drag force on spherical elements inside high-speed ball bearing with under-race lubrication

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2024-10-11 DOI:10.1016/j.ymssp.2024.112024
Wenjun Gao , Yuanhao Li , Can Li , Yang Xu , Zhenxia Liu
{"title":"Numerical prediction of drag force on spherical elements inside high-speed ball bearing with under-race lubrication","authors":"Wenjun Gao ,&nbsp;Yuanhao Li ,&nbsp;Can Li ,&nbsp;Yang Xu ,&nbsp;Zhenxia Liu","doi":"10.1016/j.ymssp.2024.112024","DOIUrl":null,"url":null,"abstract":"<div><div>In high-speed ball bearings, the revolution of spherical elements is significantly influenced by drag force of lubricant fluid, impacting the bearing’s dynamic and thermal performance. To investigate drag force in under-race lubrication ball bearings, a numerical study was conducted after the experimental verification. A multi-sphere flow model with a sandwich plate was tested, which indicates a strong agreement between numerical calculations and experimental data, with an error margin below 10 %. In the numerical simulation, pressure distribution and shear stress on the ball was studied, considering variables such as bearing rotational speed, oil flow rate, oil density, and oil viscosity. Results reveal low pressure at the upper hemisphere’s center and high pressure on both sides. Shear stress is concentrated in contact areas between the element and components like the inner ring, outer ring, and cage. Oil injection from the inner ring significantly alters the pressure and shear stress distribution in the lower hemisphere. The direction of drag force is the same as the rolling element’s revolution, acting as driving force for elements’ revolution. Increasing bearing rotating speed, oil flow rate, oil viscosity, and oil density all contribute to higher drag forces on the ball. Based on the numerical simulations, a predictive formula for the ball’s drag force was developed.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"224 ","pages":"Article 112024"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024009221","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In high-speed ball bearings, the revolution of spherical elements is significantly influenced by drag force of lubricant fluid, impacting the bearing’s dynamic and thermal performance. To investigate drag force in under-race lubrication ball bearings, a numerical study was conducted after the experimental verification. A multi-sphere flow model with a sandwich plate was tested, which indicates a strong agreement between numerical calculations and experimental data, with an error margin below 10 %. In the numerical simulation, pressure distribution and shear stress on the ball was studied, considering variables such as bearing rotational speed, oil flow rate, oil density, and oil viscosity. Results reveal low pressure at the upper hemisphere’s center and high pressure on both sides. Shear stress is concentrated in contact areas between the element and components like the inner ring, outer ring, and cage. Oil injection from the inner ring significantly alters the pressure and shear stress distribution in the lower hemisphere. The direction of drag force is the same as the rolling element’s revolution, acting as driving force for elements’ revolution. Increasing bearing rotating speed, oil flow rate, oil viscosity, and oil density all contribute to higher drag forces on the ball. Based on the numerical simulations, a predictive formula for the ball’s drag force was developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带下滚道润滑的高速球轴承内球面元件所受阻力的数值预测
在高速球轴承中,球面元件的旋转会受到润滑液阻力的显著影响,从而影响轴承的动态和热性能。为了研究赛下润滑球轴承中的阻力,在实验验证后进行了数值研究。测试结果表明,数值计算与实验数据非常吻合,误差率低于 10%。在数值模拟中,考虑到轴承转速、油流速、油密度和油粘度等变量,研究了球上的压力分布和剪应力。结果显示,上半球中心压力较低,两侧压力较高。剪切应力集中在元件与内圈、外圈和保持架等部件的接触区域。内环的注油极大地改变了下半球的压力和剪应力分布。阻力的方向与滚动体的旋转方向相同,是滚动体旋转的驱动力。轴承转速、油流速、油粘度和油密度的增加都会导致滚珠受到更大的阻力。在数值模拟的基础上,得出了滚珠阻力的预测公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
A two-stage correction method for UAV movement-induced errors in non-target computer vision-based displacement measurement Outlier-resistant guided wave dispersion curve recovery and measurement placement optimization base on multitask complex hierarchical sparse Bayesian learning Multifaceted vibration absorption of a rotating magnetic nonlinear energy sink A novel microwave-based dynamic measurement method for blade tip clearance through nonlinear I/Q imbalance correction Shrinkage mamba relation network with out-of-distribution data augmentation for rotating machinery fault detection and localization under zero-faulty data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1