Do coastal or equatorial wind anomalies drive the Indian Ocean Dipole?

IF 2.7 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Marine Systems Pub Date : 2024-09-30 DOI:10.1016/j.jmarsys.2024.104016
Jochen Kämpf
{"title":"Do coastal or equatorial wind anomalies drive the Indian Ocean Dipole?","authors":"Jochen Kämpf","doi":"10.1016/j.jmarsys.2024.104016","DOIUrl":null,"url":null,"abstract":"<div><div>Based on first scientific principles, this study shows that both equatorial and coastal wind anomalies influence the development of positive phases of the Indian Ocean Dipole (IOD) in the south-east tropical Indian Ocean (SETIO). While southeasterly winds are favorable for upwelling along Sumatra's southwest coast, zonal equatorial wind anomalies are the main control of IOD variability given that the resultant Kelvin wave enhances or suppresses the Sumatran upwelling. Many previous studies have argued that easterly equatorial wind anomalies in the SETIO are essential for triggering the positive Bjerknes feedback, and thereby, the development of positive IOD (pIOD) events. With a focus on the particularly strong pIOD event of 2019, here we show that pIOD events can also evolve in the absence of zonal equatorial wind anomalies. Hence, it is possible that the Bjerknes feedback along the equator is less involved in IOD variability than previously thought.</div></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"246 ","pages":"Article 104016"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092479632400054X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on first scientific principles, this study shows that both equatorial and coastal wind anomalies influence the development of positive phases of the Indian Ocean Dipole (IOD) in the south-east tropical Indian Ocean (SETIO). While southeasterly winds are favorable for upwelling along Sumatra's southwest coast, zonal equatorial wind anomalies are the main control of IOD variability given that the resultant Kelvin wave enhances or suppresses the Sumatran upwelling. Many previous studies have argued that easterly equatorial wind anomalies in the SETIO are essential for triggering the positive Bjerknes feedback, and thereby, the development of positive IOD (pIOD) events. With a focus on the particularly strong pIOD event of 2019, here we show that pIOD events can also evolve in the absence of zonal equatorial wind anomalies. Hence, it is possible that the Bjerknes feedback along the equator is less involved in IOD variability than previously thought.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
是沿岸风异常还是赤道风异常驱动了印度洋偶极子?
根据第一科学原理,这项研究表明,赤道风和沿岸风异常都会影响东南热带印度洋(SETIO)印度洋偶极子(IOD)正相的发展。虽然东南风有利于苏门答腊岛西南沿岸的上升流,但由于由此产生的开尔文波会增强或抑制苏门答腊岛的上升流,因此带状赤道风异常是控制印度洋偶极子变化的主要因素。以前的许多研究都认为,东南印度洋海域的赤道东风异常是触发比克尼斯正反馈的关键,从而导致正IOD(pIOD)事件的发生。在此,我们以 2019 年特别强烈的 pIOD 事件为重点,说明 pIOD 事件也可以在没有带状赤道风异常的情况下发生。因此,沿赤道的谢尔克斯反馈在 IOD 变率中的作用可能比以前认为的要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Marine Systems
Journal of Marine Systems 地学-地球科学综合
CiteScore
6.20
自引率
3.60%
发文量
81
审稿时长
6 months
期刊介绍: The Journal of Marine Systems provides a medium for interdisciplinary exchange between physical, chemical and biological oceanographers and marine geologists. The journal welcomes original research papers and review articles. Preference will be given to interdisciplinary approaches to marine systems.
期刊最新文献
Internal tidal dynamics and associated processes at highly supercritical slopes in Banda Sea: Lessons from the oceanic island of Ambon, eastern Indonesia Fine-scale phytoplankton community transitions in the oligotrophic ocean: A Mediterranean Sea case study Summertime nutrient transports in the coastal areas of the Western Northern Yellow Sea Variability of inherent optical properties of seawater in relation to the concentration and composition of suspended particulate matter in the coastal Arctic waters of western Spitsbergen Modeling the structure changes of cold-water copepods Calanus euxinus population under the influence of the black sea depths deoxygenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1